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ABSTRACT: Based on the perspective view of non-linear model fitting, a new algorithm for space resection based 
on Levenberg-Marquardt algorithm was developed in this paper. The relationship between the new algorithm and 
the current one, which is commonly implemented in the commercial software, was also discussed. The 
experimental evaluation of both algorithms with different level of inaccurate initial approximation was conducted, 
which demonstrates the superiority of the algorithm.   
 
1.  INTRODUCTION 
 
Space Resection is the process of determining the elements of exterior orientation and position of sensor from 
ground control points and their image plane co-ordinates. It is the prerequisite for Digital Elevation Model 
reconstruction and object localization. The most common method of computation is by use of collinearity 
equations, which rely on the principle that, the ground point, its imaged point and the center of projection, all lie on 
a straight line. For every control point, we can obtain two equations. Since there are six exterior parameters (three 
for orientation and three for translation), at least 3 controls point are required to solve the system. As usual we 
desire more than 3 points, hence the least squares computation technique is applied to determine the most probable 
value for the six parameters. This technique has been well established and has been widely used in various 
commercial software. 
 
Although the space resection based on collinearity equations is quite effective in application, there is an inherent 
limitation associated with the approach.  Because the whole process starts with linearization of a non-linear 
mathematical model, it is usually necessary to repeat the computations using improved value for the initial 
approximation of the unknowns. If the initial approximation of sensor’s parameter is not good enough, the 
algorithm will diverge. A lot of effort was placed on establishing good initial approximate value of unknowns, so as 
to make the algorithm converge to the true solution (P.R.Wolf al. 2000). For instance, with near-vertical 
photography, the value for ω and φ  will be 0; κ  may be estimated by identifying the direction of north on the 
photograph. However, for the general tilted photograph, it is inconvenient or even impractical. Thus two issues 
about current space resection technique are naturally raised. One is the performance of the algorithm with different 
level of inaccuracy of the initial approximation; the other is how to improve it. To seek for the answer of these 
issues consititute the bulk of the material presented in the paper.   
 
In this paper, instead of linearisation of collinearity equations, we look at the issue of space resection from the 
perspective view of the non-linear model fitting.  Following the steps of the non-linear model fitting, we developed 
another estimation framework for space resection based on Levneberg-Marquardt algorithm. Furthermore,  we 
show that the space resection based on the linearization is nothing but a special case of our new estimation 
framework in which the time-varying stabilisation parameter  λ is taken to zero, which is actually the Newton-
Gauss algorithm. Therefore, two estimation approaches for space resection are united under the same estimation 
framework. Furthermore, we analysis the performance of algorithm with different level of inaccuracy of the initial 
approximation with simulation data coming from real scenario. The experimental result demonstrated that the 
performance of space resection based on Levenberg-Marquardt algorithm is superior to that of the Newton-Gauss 
algorithm in terms of tolerance of inaccuracy for initial approximation. The fact suggests us the replacement of the 
Newton-Gauss based algorithm with Leverberg-Marquardt for the functionality of space resection in various 
commercial software.    
 
2. COLLINEARITY EQUATION AND ITS APPLICATION TO SPACE RESECTION 
 
Suppose an object point P= ),,( AAA ZYX  in a 3D global co-ordinate system O-XYZ is projected to an image 

point ),( aa yxp = in 2D image co-ordinate system o-xy. The perspective projection from P to p through the 
perspective center is characterized by the following collinearity equation 
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 where ),( 00 yx  represents the principal point of camera,  f focal length, (XL,YL,ZL) position of camera, 

)3,1( ≤≤ jimij  are elements of an orthogonal matrix defined by three successive rotation angles ω,φ, κ,  or  roll 
, pitch and yaw respectively. 
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We observe that equation (1) is non-linear and involve nine unknowns: the three rotation angles which are inherent 
in the m’s; the three exposure station co-ordinates LL YX ,  and LZ ; and the three object point co-ordinates 

AA YX ,  and AZ .  Note, however, that since the object point co-ordinates of the control points are known  in the 
issue of space resection, the number of unknowns reduces to six. On the other hand, the photo co-ordinate 
measurements ),( aa yx are constant terms, as well as the calibration parameters 00 , yx  and f which are 
considered to be constants in most applications of collinearity. The non-linear collinearity equations are linearized 
by using Taylor’s theorem. In linearizing them, equations (1) are written as follows: 
 

;0 ax
q
rfxF =−=   ay
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Where 
)()()( 333231 LALALA ZZmYYmXXmq −+−+−= ;

)()()( 131211 LALALA ZZmYYmXXmr −+−+−=  

)()()( 232221 LALALA ZZmYYmXXms −+−+−=  
 
By using Taylor’s expansion,  Eqs. (2) may be expressed in linearized form by taking partial derivatives with 
respect to the unknowns: 
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Since the photo co-ordinates ),( aa yx are measured values, if the equations are to be used in a least square 
solution, residual terms must be included to make the equations consistent. Therefore, we can obtain two linearised 
collinearity equations including these residuals for every control point given 
 

axLLL vJdZbdYbdXbdbdbdb +=−−−++ 161514131211 κφω  

ayLLL vKdZbdYbdXbdbdbdb +=−−−++ 262524232221 κφω  
 
The coefficients of the equations can be derived easily. For example, 
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and ;;; LALALA ZZZYYYXXX −=∆−=∆−=∆  
If we are given n (n>=3) points, we have a total of m=2*n linearized equations containing 6 unknowns: 
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By using least square techniques, the correction T
LLL dZdYdXdddx ],,,,,[ κφω

→
=∆ can be obtained from 

                               )()( LAxAA TT =∆
→

                                                                                                                 (5) 
The Eq. (5) is called normal equations. Since the normal matrix corresponding to the normal equation is symmetric, 
the unknowns φω dd , and κd , etc., can be obtained via LU decomposition. Based on above derivation, the space 
resection algorithm using linearized collinearity equations can be constructed as follows: 

1. Assign initial values of estimated vector T
LLL ZYXx ],,,,,[ κφω

→
= , set the sum of residuals ;0 ∞=s  

2. Based on current estimate 
→
x  and given control points and their image projections, forming the normal 

equations (5); 
3. Conserving current sum of residuals 0ssold = ; Solving the normal equations to get correction to the 

estimation vector T
LLL dZdYdXdddx ],,,,,[ κφω

→
=∆ ,   and doing the correction 

→→→
∆+= xxx ; 

4. Computing the sum of residuals 0s ; if  )( 0 oldss > , the algorithm diverges.   

5. If  0≈∆
→
x ; output the estimated vector, else go back to 2 

 
The above algorithm was adopted and implemented in all the commercial software, such as ErDas. The algorithm 
is, in fact, based on the Newton-Gauss Algorithm. The main idea of the Newton-Gauss algorithm is to approximate 

the non-linear residual surface (6) with quadratic function. The correction of 
→
x  causes a jump directly to the 

minimum of the approximated quadratic function, thus the converging speed of the algorithm is faster, compared to 
the gradient steepest descent approach.  The rationale of the approach is based on the fact that any non-linear 

residual surface can be approximated by quadratic function, at least when 
→
∆x is small. However, it is not true when 

→
x is far away from the its optimal solution. When the non-linear residual surface function around current estimate 
→
x  cannot be well approximated by the quadratic function, i.e. )( 0 oldss > , the algorithm will diverge. Therefore, 

successful application of above algorithm implies a strict condition, which dictates the assumed initial value of 
→
x cannot be far away from its optimum solution. 

 
3. SPACE RESECTION BASED ON LEVENBURG-MARQUART ALGORITHM 
 
In this section, we deal with the space resection problem from perspective view of non-linear model fitting. The 
advantage of new representation of the old problem is to set up an united estimation framework that includes both 
Newton-Gauss and Levengure-Marquart as its components. As opposed to the approach in the last section, there is 
no obvious linearization process involved. In the following, based the steps of generic non-linear model fitting 



 

 

(Wilian H. P al. 1992), we take the issue of space resection as an example to elaborate the framework, so as to 
discuss the relation between these two estimating approaches in more details 
  
In this framework, the first step is to define the residual function. For our space resection problem, the residual is 
defined as follows 
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→

i
irxe 2)( . In the second step, we calculate the gradient and 

Hessian matrix of error function. Under the assumption that error function is well approximated by a quadratic 
function, the gradient and hessian matrix are determined by  
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where [ ] T
LLL

T ZYXxxxxxxx ],,,,,[,,,,, 654321 κφω==
→

 
Every component of gradient vector can be obtained from equation (2). For example,  
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In the third step, the set of linear equation is formed, which allows us to estimate the correction to the 
→
x  either 

according to the LM algorithm or Newton-Gauss algorithm. The form of this set of linear equation is as follows: 

                            
→→

=∆+ bxIH )( λ                                                                                                                         (9)  

And  →

→

∂

∂
= ∑

x

r
rb i

i
i , and λ is a time-varying stabilization factor. 

In formula (9), if we select 0=λ , the algorithm performs the Newton-Gauss minimization framework. In this 
situation, the formula (9) boils down to the normal equation (5). The fact demonstrates that the space resection 
algorithm using linearized collinearity equations described in the last section is equivalent to the Newton-Gauss 
minimization algorithm. 
In the case when 0≠λ , the algorithm becomes the Levenberg-Marquardt algorithm. It is an elegant method for 

varying smoothly between the Newton-Gauss and steepest descent method. When the initial value of 
→
x is far from 

the minimum, the error surface may not be well approximated by quadratic function, steepest descent was used, 

dealing with the more generic non-linear minimization issue. When current estimate 
→
x  approaches the minimum, 

the functionality of the algorithm switches continuously to the Newton-Gauss approach. In this way, we can relax 

the strict demand for the initial value of 
→
x , enabling the algorithm convergence even the initial estimate is not so 

close to the optimum solution. 
 
Based on above steps, the space resection algorithm based on the Levenberg-Marquardt algorithm can be 
constructed as follows: 

1. Assign initial values of estimated vector T
LLL ZYXx ],,,,,[ κφω

→
= , set the sum of residuals ;0 ∞=s and 

picking a modest value for λ, say λ=0.01. 



 

 

2. Based on current estimate 
→
x  and given control points and their image projections, forming the gradient vector 

and Hessian matrix based on equation (6) and (7). Conserving current sum of residuals 0ssold = ; 

3. Solving the equations (9)  to get correction to the estimation vector T
LLL dZdYdXdddx ],,,,,[ κφω

→
=∆ . 

4. If  )()(
→→→

≥∆+ xexxe , increase λ by a factor of 10 and go back to 3.  

5. If  )()(
→→→

<∆+ xexxe , decrease λ by a factor of 10, conduct the correction 
→→→
∆+= xxx  and 

)(0

→→
∆+= xxes  

6. If  0≈∆
→
x ; output the estimated vector, else go back to 2. 

 
4. PREFORMANCE ANALYSIS OF TWO ALGORITHMS 
 
In this section, two experiments were conducted to analyze the performance of Newton-Gauss and Levenburg-
Marquardt algorithms for space resection. The data used in experiments are simulation data, but it was obtained 
based on real scenario. 
In the first experiment, the image was taken by a frame camera, whose focal length is 153.124 mm.  The exterior 
parameter of camera when taking the picture is shown in Table1.  From Table 1, we understand the image is the 
vertical photo. There are five control points available, whose co-ordinates are shown in Table 3. In order to show 
the robustness of Newton-Gauss and LM Algorithms for space resection, we put different noise levels on the initial 
values to see if the algorithm can be converged to the true values. In this case, we are able to set up the error bound 
for these two algorithms. Table 4 and Table 5 demonstrate the performance of Newton-Gauss and Levenburge-
Marquart respectively. We observed that the performance of LM algorithm is superior to that of Newton-Gauss’ s 
algorithm. 
                     Table 1. The exterior information and interior orientation of the camera  
    Omega       Phi     Kappa          XL         YL        ZL 
   Value   0.0132°   -0.0556°   90.3866° 666716.9974 115919.2083 8794.7161 
 
                   Table 2. The co-ordinates of control points and their projections 
        image co-ordinates (mm) 

           ax                  ay  
              Co-ordinates in 3D global  coordinate system (m) 
              Xa                            Ya                                 Za 

       1      -19.968142    33.563984     665228.955                 115012.472                    1947.672  
       2      70.815665     50.595992     664456.22                   119052.15                      1988.82 
       3      60.847086    -36.285546     668338.22                   118685.9                        1886.712 
       4      62.105090    -93.341627       670841.48                   118696.89                      2014.0 
       5     -25.316595    -94.049006     670970.45                   114815.23                     1891.888 
 
             Table 3. The performance of Newton-Gauss algorithm for space resection 
Noise 
level 

Conver
-gence 

Iteration
no. 

                  Initial values (position +orientation) 
        

  5 %   Yes      5 (700052.8473 121715.1687 9234.4519)     (0.0139° -0.0584° 94.9059°) 
 10 %   Yes      6 (753388.6971 127511.1291  9674.1877)    (0.0145°  0.0012°  99.4253°) 
 20 %   Yes      7 (800060.3969 139103.05 10553.6593)      (0.0158°   -0.0667°  108.4639° ) 
 30 %   Yes      7 (866732.0966 150094.9708 11433.1309)  (0.0172° –0.0723° 117.5026°) 
 40 %   Yes      8  (933403.7964 162286.8916 12312.6025) (0.0185° –0.0778° 126.5412°) 
 45 %   No     2 (966739.6462  168082.8520 12753.3383)  ( 0.0191° -0.0826° 131.0606°)  
 
            Table 4. The performance of Levenburge-Marquardt algorithm for space resection 
Noise 
level 

Conver
-gence 

Iteration
no. 

         Initial values (position +orientation) 
 

  5 %   Yes      4 (700052.8473 121715.1687 9234.4519)     (0.0139° -0.0584° 94.9059°) 
 10 %   Yes      5 (753388.6971 127511.1291  9674.1877)    (0.0145°  0.0012°  99.4253°) 
 20 %   Yes      5 (800060.3969 139103.05 10553.6593)      (0.0158°   -0.0667°  108.4639° ) 
 30 %   Yes      6 (866732.0966 150094.9708 11433.1309)  (0.0172° –0.0723° 117.5026° 
 40 %   Yes      7  (933403.7964 162286.8916 12312.6025) (0.0185° –0.0778° 126.5412°) 



 

 

 50 %   Yes     10 (1000075.4961 173878.8124 13192.0742)   ( 0.0198° -0.0834° 135.5799°)  
 55%   Yes     23 (1033411.346 179674.346 13631.81)   ( 0.0205° -0.0862° 142.0992°)  
 
In the second experiment, instead of capturing a vertical photo, we take the picture in oblique direction. The camera 
position and control points remain the same as the first example. The only difference is the orientation angles of the 
camera, as shown in Table 5. Due to the orientation variation, the image co-ordinates of the projection of control 
points are also changed accordingly, as shown in Table 6. The performance analysis of the two algorithms is 
tabulated in Table 7 and Table 8. As expected, the LM algorithm for tilted photograph is advantage over the 
Newton-Gauss algorithm. 
                                              Table 5. The exterior information of the camera  
    Omega       Phi     Kappa          XL         YL        ZL 
   Value   10.0132°   -5.0556°   70.3866° 666716.9974 115919.2083 8794.7161 
                                          
                                          Table 6. The co-ordinates of control points and their projections 
        Image co-ordinates (mm) 

           ax                  ay  
              Co-ordinates in 3D global  coordinate system (m) 
              Xa                            Ya                                 Za 

       1     -63.24033       29.620801           665228.955                 115012.472                    1947.672  
       2      17.913679      73.322803     664456.22                   119052.15                      1988.82 
       3      36.460923      -8.386838     668338.22                   118685.9                        1886.712 
       4     53.792589       -56.241781     670841.48                   118696.89                      2014.0 
       5    -20.428644      -92.703080     670970.45                   114815.23                     1891.888 
                         
                                           Table 7. The performance of Newton-Gauss algorithm for space resection 
Noise 
level 

Conver
-gence 

Iteration
no. 

         Initial values (position +orientation) 
        

  1 %   Yes      6 (673384.1674 117078.4004 8882.6633)     (10.1133° -5.1062° 71.0905°) 
  5 %   Yes      8 (700052.8473 121715.1687 9234.4519)     (10.5139° -5..3084° 73.9059°) 
  7 %   Yes      10 (713387.1872 124033.5529 9410.3462)     (10.7141° -5.4095°  75.3137°) 
  9 %   No      3 (726721.5272  126351.9370 9586.2405)     (10.9144° -5..5106° 76.7214°) 
 
                                           Table 8. The performance of LM algorithm for space resection 
Noise 
level 

Conver
-gence 

Iteration
no. 

         Initial values (position +orientation) 
        

   5 %   Yes      10 (700052.8473 121715.1687 9234.4519)     (10.5139° -5..3084° 73.9059°) 
   9 %   Yes      13 (726721.5272  126351.9370 9586.2405)     (10.9144° -5..5106° 76.7214°) 
9.25 %   Yes      16 (728388.3197  126641.7351 9608.2273)     (10.9394° -5..5232° 76.8974°) 
 
Compared with these two examples, we observed that the robustness of either Newton or LM algorithm are 
extremely better in processing vertical photo than in tilted photo. This is because The formula (2.1), for the vertical 
photograph in which ω=0, φ=0 and κ=90°, the error function can be well approximated by a quadratic function, 
which is the convex function in nature. Since it is a convex function, the algorithms will converged its global 
minimum, regardless of the initial value assigned. 
  
5. CONCLUSION 
 
Two contributions were made in the paper. First of all, we developed a new algorithm for space resection based on 
the non-linear model fitting. The performance of the algorithm is illustrated to be superior to the current approach 
from both theory and experimental results. Secondly, perhaps more importantly, the instance of solving the space 
resection issue discussed in the paper gives the reader the possibility to take a fresh look at a number of old 
problems. There may exist some more efficient way to solve them, beside the popular approach recognized 
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