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ABSTRACT: Surface water, a vital earth resource, has an essential influence on ecological 

environment, society, economy, human health and many other aspects, therefore it is significant 

to extract and monitor water bodies. Due to characteristics of the large-scale instantaneous 

observation and revisiting, remote sensing data play an important role in exploring the earth 

natural resources. The strategy of using water indices, which is simple, easy to use and less time-

consuming, is one of the mainstream methods of water body extraction based on remote sensing 

data. Most traditional water indices, for example, Modified Normalized Difference Water Index 

(MNDWI) and Automated Water Extraction Index (AWEI), are devised for Landsat such medium 

spatial resolution imagery and have to use short-wave infrared. As the only commercial 

hyperspectral satellite with satellite constellation in China, the OHS hyperspectral satellite, 

launched in 2018, has 32 spectral bands with a spatial resolution of 10m. In spite of the high 

spectral resolution, the upper limit of its band is only to the near infrared band (1000nm), so the 

existing water indices basically cannot be applied to this data. To solve this plight, we focus on 

the characteristics of OHS hyperspectral data, analyze the spectral differences between water 

bodies and other land cover types and propose a new water index (namely, OHS-WI). A set of 

pure pixels, consisting of typical water and nonwater (e.g. soil, vegetation and shadow), are 

selected. By analyzing the spectral patterns, we devised an index (OHS-WI) to discriminate water 

from other land cover types. By selecting Beijing, Guangzhou and Shenzhen such cities as test 

sites, we compared the proposed OHS-WI with the traditional Normalized Difference Water Index 

(NDWI) under two threshold selection strategies, i.e., OTSU (Maximum between-class variance) 

and optimum (Manually selected). We applied the proposed OHS-WI to generate water extraction 

results in a series of test sites, which reached a better accuracy than the NDWI method for both 

threshold selection strategies. The results using optimal threshold achieved high accuracy than 

that using OTSU threshold in three test sites, with the Kappa coefficient of 0.80, 0.73 and 0.86 

(OHS-WI) and 0.67, 0.62 and 0.71 (NDWI). According to the quantitative evaluation metrics, the 

omission error is lower when using the OTSU threshold while the optimal threshold balances the 

commission and omission of the extraction results. It is worth noting that the results obtained by 

OHS-WI under the OTSU threshold are still better than the NDWI extraction results when the 

optimal threshold is used. The proposed OHS-WI outperformed the NDWI in all the study areas, 

which can be proved by the metrics of producer’s accuracy, user’s accuracy and Kappa coefficient. 

The extracted water maps show that the proposed method not only accurately extracts large water 

bodies, but also effectively retains small water bodies, which reduces the omission error of 

extraction results. A series of experimental results show that the OHS-WI water extraction method 

is full of potential for automatically extracting and monitoring water resources using hyperspectral 
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remote sensing data. 

 

1. INTRODUCTION 

 

Due to the essential role surface water plays in urban environment, public health and regional 

ecosystem cycle, extracting and monitoring surface water is a topic of strong demand(Tulbure et 

al. 2016). In view of the abundant observation archive at multiple scales and time series, remote 

sensing data are commonly used in water detection(Olthof et al. 2015). There are various water 

extraction methods for optical imagery, which can be roughly categorized into the following types: 

(a) spectral characteristics enhancement method, i.e., highlighting the radiation differences 

between water and nonwater bodies in bands, such as single-band threshold method or water index 

method(Feyisa et al. 2014; Fisher et al. 2016; Guo et al. 2017; Malahlela 2016; McFeeters 2007; 

Xu 2006), (b) image classification method(Sun et al. 2015) and (c) linear unmixing method(Olthof 

et al. 2015). In particular, with the benefit of easy to apply and less time-consuming, the water 

index methods are widely accepted for water body extraction. However, devised for Landsat such 

medium spatial resolution imagery, most existing water indices, for example, Modified 

Normalized Difference Water Index (MNDWI)(Xu 2006), Automated Water Extraction Index 

(AWEI)(Feyisa et al. 2014), Simple Water Index (SWI)(Malahlela 2016), Weighted Normalized 

Difference Water Index (WNDWI)(Guo et al. 2017) and 2015 Water Index (WI2015)(Fisher et al. 

2016), are not suitable for images without short-wave infrared band.  

Launched in 2018, the OHS (Zhuhai-1) hyperspectral satellite, which is the only commercial 

hyperspectral satellite with satellite constellation in China, has 32 spectral bands with a spatial 

resolution of 10m. Nevertheless, subjected to the band range (400nm-1000nm), the mainstream 

water indices basically cannot be applied to this data, which limits the application in water 

extraction. Thus, to address the problem, in this study, we focus on the characteristics of OHS 

hyperspectral data, analyze the spectral differences between water bodies and other land cover 

types and propose a new water index (namely, OHS-WI). 

 

2. STUDY AREA AND DATA 

 

2.1 Study area 

 

Taking into account the diversity of water body types and the complexity of the surface 

environment, the proposed water index aims to reduce the false alarms as much as possible while 

at the same time, keep a satisfactory producer’s accuracy. In order to test the accuracy and 

robustness of the OHS-WI, three urban areas (Beijing, Guangzhou and Shenzhen) were selected 

as the study sites (Figure 1), in which there are water bodies with variable shapes, sizes and water 

quality conditions (e.g., rivers, lakes, reservoirs, ponds).  

 

2.2 OHS hyperspectral imagery 

 

As the only commercial hyperspectral satellite with satellite constellation in China, the OHS 

(Zhihai-1) hyperspectral satellite, with a spectral resolution of 2.5m and a spatial resolution of 

10m, has 32 spectral bands, spanning from 400nm to 1000nm. Owing to its abundant information, 

the OHS hyperspectral imagery could be used in several applications, such as natural resource 



monitoring, disaster emergency management, urban planning and so on. Moreover, compared 

with a 10-day revisit frequency of a single satellite, the OHS satellite constellation, equipped with 

four satellites, could revisit the same location every two days, making it an ideal data for 

hyperspectral remote sensing in water extraction. 

In this study, the image preprocessing includes radiometric calibration, atmospheric correction, 

and orthorectification, which converting the original DN value to the surface reflectance and 

correcting the obvious geometric distortion caused by the terrain and sensor. 

 

Figure 1. OHS (Zhuhai-1) false color images overlaid with ground truth references of study 

areas: (a), (b) and (c) are Beijing, Guangzhou and Shenzhen, respectively. 

 

3. METHODOLOGY 

 

The proposed method consists of the following five steps (Figure 2): (1) selecting pure pixels; (2) 

developing a new water index by stepwise linear regression; (3) calculating the water indexes for 

comparison; (4) selecting the thresholds to extract water; (5) assessing the accuracy. The details 

of each step are described below. 

 

3.1 Pure-pixel selection 



 

In order to explore the spectral variation between water bodies and other objects, in this study, a 

set of pure pixels of five classical land cover types, i.e., water, vegetation, soil, building and 

shadow, were selected in all study sites. Furthermore, because of the diversity among different 

cities, a special kind of object was added. That is, dark greenhouse in Guangzhou, which might 

be one of the source of confusion when extracting water bodies. Analyzing the spectral features 

of these pure pixels, this study aims to design a method to distinguish water from nonwater 

accurately. 

Taking the Google Earth images acquired at the corresponding time as reference, the pure pixels 

were delineated manually. Meanwhile, the selection of pure pixels obeyed the principles beneath. 

Water samples were taken from the middle of water bodies, avoiding the mixed pixels on the 

boundary. For vegetation, try to choose pixels from a large area of homogeneous lawn or forest 

with high canopy closure. Similarly, the pure pixels of soil were also chosen from agricultural 

fields in the suburbs. The airport runways, asphalt roads and roofs of large factories were the main 

sources of building samples. The pure pixels of shadow were distributed as evenly as possible in 

the urban area. 

Finally, in each city, 300 pure pixels were selected for each land cover type. Calculating the 

separability of each land cover type samples through the Jeffries-Matusita’s distance (the value 

range is between 0 and 2). The J-M values between all pairs of sample types were greater than 

1.9, indicating that these samples were separable. 

 

3.2 OHS water index (OHS-WI) 

 

The existing water indexes are usually designed based on subjective judgment of the difference 

in the spectral curves between water bodies and other land cover types. Normalized Difference 

Water Index (NDWI) used a ratio method to highlight the difference in reflection between water 

bodies, bare soil, and vegetation in the green band and near-infrared band so as to distinguish 

them. By observing the spectral patterns of different land features, the coefficients of the AWEI 

formulas are obtained by empirical methods. Similarly, analyzing the spectral reflectance of water 

bodies, shadow as well as built-up areas, the SWI was constructed of blue band and short-wave 

infrared band. 

Nevertheless, the above-mentioned water indexes are mostly used in the Landsat multispectral 

images. As mentioned before, the band range of Landsat satellite extends to mid-infrared, while 

the upper limit of the band of OHS hyperspectral date is only to the near infrared band. Therefore, 

except for NDWI, the existing water indexes cannot be used for water extraction of OHS (Zhuhai-

1) hyperspectral data. Moreover, unlike the number of bands of TM/ETM+ sensor and OLI sensor, 

which is six and eight respectively without the thermal infrared band, the total number of bands 

of the OHS hyperspectral data is 32, which is 4-5 times the data volume of the former. Hence, the 

method searching for spectral patterns through subjective observation that used before was time-

consuming and not feasible. Introducing the idea of linear regression, this study constructed a new 

water index – OHS-WI. 

In the conventional regression method, to get the regression equation, there are two parts, the real 

value and the observed value. In this study, the observed value is the spectral reflectance of the 

pure pixels and the real value is the water index value that needs to be obtained. It should be noted 

that there is no true index value at that time, because the water index has not been proposed yet. 



Considering the final water index, which generally follows the rule that the index value of water 

bodies is positive while the index value of nonwater is negative, at first, the “index value” of water 

samples is set to 1 and that of the nonwater samples is set to -1. After stepwise linear regression, 

further artificial adjustments were made according to the spectral curves of various ground 

features, and finally the OHS-WI proposed in this study was obtained: 

 

OHS −WI = 0.001(−ρ4 + ρ7 + ρ9 − ρ10 + ρ12 − ρ14 − ρ19 + ρ23 − ρ28) − 0.43 (1) 

 

where ρx represents the reflectance of the x-th band. 

 

3.3 Optimal NDWI for comparison 

 

Since OHS hyperspectral data has 32 bands, a series of NDWI can be calculated (Function 2). In 

order to select the optimal NDWI for comparative experiment, this study carried out 91 

combinations of seven possible green bands and thirteen possible near-infrared bands, according 

to the band range. Based on the pure pixels, the J-M distance was used to quantify the separability 

of water and nonwater. Eventually, the optimal NDWI combination of each of the three study 

areas was obtained: Beijing (580nm, 760nm), Guangzhou (610nm, 790nm) and Shenzhen (550nm, 

880nm). 

 

NDWI = (𝜌𝐺𝑟𝑒𝑒𝑛 − 𝜌𝑁𝐼𝑅) (𝜌𝐺𝑟𝑒𝑒𝑛 + 𝜌𝑁𝐼𝑅)⁄  (2) 

 

3.4 Threshold selection 

 

The key step of the water index extraction method is the selection of the threshold. In this study, 

we compared the extraction accuracy under two threshold selection methods (automatic Otsu-

based method, manual optimal threshold selection). 

The manual threshold is selected based on the F1-score that is an index used in statistics to 

measure the accuracy of a binary classification model. It takes into account the accuracy and recall 

of the classification model, which can be regarded as a harmonic mean of model accuracy and 

recall, ranging from 0 to 1. According to the F1-score, the corresponding optimal NDWI and 

OHS-WI thresholds of Beijing, Guangzhou, and Shenzhen were obtained: -0.103, 0.084, -0.048 

and -1.24, -1.42, -1.25, respectively. 

 

3.5 Estimation of water extraction results accuracy 

 

Compared with the results of NDWI, the extraction results of the OHS-WI were evaluated in three 

study areas. The producer’s accuracy (PA), user’s accuracy (UA), and Kappa coefficient 

calculated from the confusion matrix were used as indicators to evaluate the results of water 

extraction. 

Since the smallest water body of interest in this study is 500 square meters (that is, 5 pixels), all 

extraction results are constrained in area, which means the extracted water bodies less than 500 

square meters were removed. 



 

Figure 2. Flowchart of the proposed water extraction method 

 

4. RESULTS 

 

4.1 Water extraction maps using automatic Otsu-based threshold method 

 

Taking the Otsu-based threshold method, two kinds of water index were used to extract water 

bodies in all study sites. The final water mapping results are shown in Figure 3-5. Through visual 

inspection, it is easy to find that the results by NDWI have led to a large number of 

misclassifications, which means in Guangzhou and Beijing almost 90% of the regions are divided 

into water bodies. On the other hand, the extraction results using OHS-WI are obviously closer to 

the real situation and the boundaries of water are complete and clear, although there may be some 

false positives caused by shadow in dense built-up areas. 

According to the consequence of the experiments, under the automatic threshold condition, the 

OHS-WI is a more reliable choice, because it not only has excellent extraction capability for large 

water bodies, but also for the smaller ones it could extract the complete shapes, which conforms 

to the requirements of water body monitoring. 



 

Figure 3. Comparison of water extraction results using Otsu-based threshold in Guangzhou 

 

Figure 4. Comparison of water extraction results using Otsu-based threshold in Beijing 

 

Figure 5. Comparison of water extraction results using Otsu-based threshold in Shenzhen 

 

4.2 Water extraction maps using manual optimal threshold method 

 

Figure 6-8 show the water extraction results using the two water indexes based on the manual 

optimal threshold method. Although the lakes such large water bodies could be completely 

extracted by both two water indexes, the capabilities of the indexes for extracting the small size 

water bodies are poles apart. In the three study areas, the NDWI results still have many omissions 

when there are many false alarms, which is mainly due to the lack of river channels in Beijing and 

the absence of ponds in Guangzhou and Shenzhen. In contrast, compared to the use of automatic 

threshold, when adopting the manual optical ones, the OHS-WI can retain a relatively complete 



water extraction result while eliminating a large number of misclassification errors. 

From the results’ perspective, the proposed OHS-WI can balance the completeness and accuracy 

of water extraction, while NDWI cannot achieve the same ideal effect. 

 

Figure 6. Comparison of water extraction results using manual optimal threshold in Guangzhou 

 

Figure 7. Comparison of water extraction results using manual optimal threshold in Beijing 

 

Figure 8. Comparison of water extraction results using manual optimal threshold in Shenzhen 

 

4.3 Accuracy assessment 

 

In order to better quantitatively compare the water extraction results of the two water indexes, the 

user’s accuracy (UA), producer’s accuracy (PA) and Kappa coefficient calculated by confusion 

matrix were used. It can be seen from Table 1 that when using the manually optimal threshold the 

Kappa coefficients are all better than that of the automatic threshold, which indicates the former 



one takes into account the completeness and accuracy of the extraction results. In all study sites, 

the Kappa of OHS-WI are better than that of NDWI under the same threshold selection method, 

which proves that the proposed OHS-WI has a better effect. 

The higher producer’s accuracy of automatic threshold correlates with the fewer water omissions. 

Comparing OHS-WI based on automatic threshold and NDWI based on optimal threshold, in all 

experimental areas, the producer’s accuracy of OHS-WI extraction results is much higher than 

that of NDWI. It is pronounced that OHS-WI makes fewer omissions, which is significant for 

small water bodies monitoring. The Kappa of OHS-WI using automatic threshold is higher than 

that of NDWI using optimal threshold in all areas, except Beijing, proving that OHS-WI is a 

robust and effective water index. The accuracy in Beijing is subjected to the misclassification of 

building shadow, which can be solved by post-processing. 

 

Table 1. Accuracy assessment of the three study sites 

Method Threshold 
Guangzhou Beijing Shenzhen 

Kappa PA % UA% Kappa PA % UA% Kappa PA % UA% 

OHS-WI 
Automatic 0.7764 95.16 67.76 0.5787 97.76 42.00 0.7311 98.53 59.44 

Optimal 0.8028 82.89 80.05 0.7341 70.55 77.36 0.8639 86.92 86.70 

NDWI 
Automatic 0.082 95.76 9.87 0.0237 99.92 2.69 0.0744 99.23 6.83 

Optimal 0.6728 56.45 87.96 0.6245 55.77 72.22 0.7119 60.64 88.33 

 

5. CONCLUSION 

 

In this study, we proposed a new water index which is designed for the OHS (Zhuhai-1) 

hyperspectral data and constructed by linear regression, based on reflectance of a set of different 

land cover types, i.e. water, vegetation, soil, building and shadow. According to the experiments 

in three study sites, no matter using automatic or manually optimal threshold, the proposed OHS-

WI could get relatively accurate extraction results, especially for those small water bodies. 

Moreover, compared with NDWI, under the condition of automatic threshold, the commission 

error of OHS-WI is obviously less, and in the case of optimal threshold, OHS-WI reaches fewer 

omission error. When comparing the water extraction results of OHS-WI using automatic 

threshold and that of NDWI taking optimal threshold, the former show higher extraction accuracy, 

which proves the OHS-WI is a simple, robust and potential for application method. 

Despite there may be some misclassifications due to the shadow of buildings, when taking the 

OHS-WI in urban area with dense structures, such commission errors can be reduced by further 

post-processing based on texture information. This index is useful for the effective extraction of 

small water bodies and provides a favorable reference for water resources monitoring, 

investigating and evaluating. In the future, post-processing method and analyzing water quality 

conditions of specific water body categories will be the focus. 
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