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Abstract: One of the obstacles in providing efficient subsidy schemes to the rice farmers is the 

lack of exact information on the areas where paddy have been cultivated. It is a very important 

information so that the subsidies will reach the targeted farmers correctly. Manual surveying 

followed by visual digitization and interpretation are costly, time consuming and very tedious 

process, which is in contrast to remote sensing-based segmentation classification that is able to 

identify the relevant cultivated plots of the paddy. Moreover, an object-based image analysis could 

replace the manual interpretation of the mapping cultivation areas at the plot level. Hence, a deep 

learning segmentation algorithm is proposed in this work. This semantic segmentation 

architecture consists of three types of layer, which are convolutional layer, nonlinear activation 

layer and pooling layers. This architecture is then used to segment the paddy cultivation areas into 

“Active Paddy Parcel (PA)”, “Miscellaneous paddy parcel (PT)” and “Non-Paddy Areas (N)”. 

The results show that the proposed segmentation technique returns promising outcome with mean 

accuracy of 0.896 for a good satellite image condition. Proper handling of satellite data during 

images preparation is important in order to obtain good results. For future work, an optimal 

combination of high resolution of optical images with multi-temporal and multi-polarised radar 

images can be considered to complement the weakness of each modality.  

 

1. INTRODUCTION 

 

Rice is a staple food for Malaysia. In 2017, Malaysian average consume of rice is about 74.4 

kilograms per year (MOA, 2017). In year 2019, 2.9 million metric tons of rice is produced from 

684,416 hectares of paddy cultivation area in Malaysia (Unit Geospatial Pertanian dan Statistik 

Bahagian Perancangan Strategik Jabatan Pertanian Semenanjung Malaysia, 2019). Even though 

the production is considered high, Malaysia self-sufficiency level (SSL) is still between 60-70 

percent, yet the rest is imported mainly from Thailand, Vietnam and Pakistan.  

One of the obstacles in paddy production is the conversion of paddy cultivation area to other land 

use such for commercial or other crops (Hasimah et al., 2019). Realizing that, Malaysian Space 

Agency (MYSA) and Department of Agriculture Malaysia (DOA) has collaborated to developed 

the Paddy Geospatial Information System (MakGeoPadi) to identify the exact areas of paddy 

cultivations all over Malaysia. The main function of the MakGeoPadi system has the role of 

determining areas of 12 granaries all over Malaysia. Meanwhile, a precise paddy segmentation is 

crucial because frequent changes of land use will determine the exact area of paddy cultivation. 

Segmentation of paddy lot into three (3) categories which are i) active paddy parcel (PA) including 
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four (4) major paddy-planting activities which are ploughing, irrigating, planting and harvesting; 

ii) miscellaneous paddy parcel (PT); and iii) non-paddy areas (N) at lot level is critical because of 

frequent change of land use yearly to fulfil the needs of National Crop Cutting Survey (CCS) 

which has to be reported annually besides influencing the rate of subsidy given by the government 

to the agricultural agency involved. Currently, the manual annotation through visual digitization 

of high-resolution satellite images were used to determine the type of land usage in paddy fields 

which highly depends on the expertise of individuals to segment the satellite images of the paddy 

fields. The practice is costly and taking much time involving 12 granaries areas, thus an automatic 

approach is needed.   

 

Nowadays, due to the outstanding achievements of deep learning models in outperforming in a 

wide range of applications, the remote sensing community was shifting their attention to deep 

learning models (M. Pashaei et al., 2020). Several deep learning network architectures have been 

proposed for pixel-wise image labelling commonly called semantic image segmentation. 

Semantic image segmentation refers to the process of associating each individual pixel of an 

image with a predefined class label.  The approach of this new method of segmentation is parallel 

to the transformation force of agriculture sector towards Digitalizing Agriculture 4.0 revolution 

which involving internet, cloud computing, big data, artificial intelligence, and of digital practices. 

In this study, a deep learning approach using fully convolutional network (FCN) to semantically 

segment the high-resolution satellite images is proposed by experts from Cyber-Physical 

Engineering Lab, Faculty of Engineering and Built Environment, University Kebangsaan 

Malaysia (UKM). The specific objective is to study the abilities of deep learning FCN to 

semantically segment the paddy cultivation area into 3 categories which are i) active paddy parcel 

(PA) including four (4) major paddy-planting activities which are ploughing, irrigating, planting 

and harvesting, ii) miscellaneous paddy parcel (PT) and iii) non-paddy areas (N) at plot level. 

 

2. METHODOLOGY 

 

2.1 Study Area 

  

Multi-temporal satellite images of Integrated Agriculture Development Area (IADA) Barat Laut 

Selangor which located in Selangor State is used as the testing area for this study (Figure 1). This 

flat topography granary area covers approximately 20,116 hectares of paddy crop and wide variety 

of other agricultural crop including oil palm, vegetables and fruits and also uncultivated area 

including houses and roadways (Sistem MakGeoPadi, 2020). Due to structured irrigation system, 

this unique short-term crop is planted twice a year. This fertile area is among the highest rice 

producer in Malaysia which produce about 211,795 metric tonnes in 2019 (Unit Geospatial 

Pertanian dan Statistik Bahagian Perancangan Strategik Jabatan Pertanian Semenanjung 

Malaysia, 2019). 

 



 
Figure 1: IADA Barat Laut Selangor Granary Area 

 

2.2  Data Collection 

  

Two dates of Pleiades satellite image were acquired consist of i) cultivated paddy area that include 

four (4) major paddy-planting activities which are ploughing, irrigating, planting and harvesting; 

and ii) uncultivated paddy areas that include roadways, houses, and other land usages. The 

National Digital Cadastral Database (NDCDB) lot was acquired from Department of Survey and 

Mapping Malaysia (JUPEM) as the authority department in land surveys.  

 

2.3  Pre-processing  

 

Pre-processing of Pleiades including re-project and enhancement was done using ArcMap 10.6.1 

and Erdas Imagine. The pre-processing flowchart as shows in Figure 2. 

 

 
Figure 2: Pre-processing flowchart 

 

 



2.3.1 Image Processing 

 

The multi-temporal Pleiades satellite images were enhanced to improve the images color’s 

appearance and contrast using Erdas Imagine 2016 software. Then the images were re-project into 

Rectified Skew Orthomorphic (RSO) Malaya Meter to match with the cadastral lot using ArcMap 

10.6.1 software. The enhanced images were then subset to exclude non granary areas of the image 

scene. 

 

2.3.2 Updating Paddy and Non-paddy  

 

Individual paddy lot was segmented into three (3) categories, i.e. i) active paddy parcel (PA) 

including four (4) major paddy-planting activities which are ploughing, irrigating, planting and 

harvesting; ii) miscellaneous paddy parcel (PT); and iii) non-paddy areas (N) including building 

and other permanent crop to produce ground truth samples for deep learning training. The manual 

segmentation was done by overlaying the cadastral lot with the multi-temporal Pleiades satellite 

images using ArcMap 10.6.1 software. The segmentation output was verified by Integrated 

Agriculture Development Area (IADA) Barat Laut Selangor as the authorized department through 

a verification program in the field. Figure 3 shows a sample of Pleiades image and the ground 

truth. 

 

 
Figure 3: A sample of subset Pleiades image and the ground truth 

 

2.4  Semantic Segmentation Using Deep Learning 

 

Deep learning techniques are very effective in semantic segmentation, that aims to label each pixel 

into a class of objects or non-objects. Semantic segmentation plays an important role in image 

understanding and essential for image analysis tasks, as such it can produce precise and faster 

segmentation output (M. Pashaei et al., 2020). This approach of semantic segmentation using deep 

learning in this study is assisted by experts from Cyber-Physical Engineering Lab, Faculty of 

Engineering and Built Environment, University Kebangsaan Malaysia (UKM). The main goal of 

this work is to semantically segments the Pleiades satellite images into four categories, which are 

i) active paddy parcel (PA) that covers four (4) major paddy-planting activities: ploughing, 

irrigating, planting and harvesting; ii) miscellaneous paddy parcel (PT); iii) non-paddy areas (N) 



that include buildings and other types of permanent crops; and iv) backgrounds of the image. The 

high-resolution satellite images were divided into smaller regions of 224 x 224 pixels to fit the 

Fully Convolutional Network (FCN) architecture. This FCN used the convolutional neural 

network to extract image feature, then transforms the number of channels into the number of 

categories through 1x1 convolution layer, then finally transform the height and width of the 

feature map to the size of the input image using transposed convolution layer. The final output 

channel contains the category prediction of the pixel of the corresponding spatial position. 

Architecture of FCN is represented in Figure 4.  

 

 
Figure 4: Architecture of FCN  

 

2.4 Accuracy Assessment  

 

As for the accuracy assessment, 29 data points from Pleiades image were randomly selected using 

stratified random sampling for three categories, PA, PT and N where the number of points were 

stratified to the distribution of the categories on the segmentation output image. 

 

3.0 RESULT AND DISCUSSION 

 

High resolution Pleiades satellite images over paddy area at Bagan Terap, Sungai Nipah and Pasir 

Panjang of IADA Barat Laut Selangor granary area were extracted using deep learning 

segmentation FCN with 7x7 kernel size. The three (3) areas were selected due to less cloud and 

shadow effect over other area. The result from deep learning segmentation shows that the active 

paddy parcel (PA) and non-paddy areas (N) can be easily identified using the FCN semantic 

segmentation technique. However, it is quite difficult to identify the miscellaneous paddy parcel 

(PT) because of the complexity of PT feature such in Figure 5, where the feature of the PT on the 

satellite image (red box) shows vegetables bed which is misidentified as show in the segmentation 

image output. In addition, although the PA is in harvesting stage (yellow box), the FCN 

segmentation is accurate.  

 



 
Figure 5: Output sample of the semantic segmentation networks on paddy fields. First 

column: Input image, second column: FCN output 

 

Overall accuracy of PA and N is 89.66% as shows in Table 1 involving all paddy planting 

activities from ploughing, irrigating, planting until harvesting, accuracy assessment was 

conducted by matching the 29 verification points from the high-resolution images with the output 

images as well as the Kappa statistics were computed from the contingency matrix and result was 

0.7680. From 29 sampling points, no verification point for PT is randomly selected since the 

category is too small within whole study areas. The matching observations of sampling points is 

shows in Table 2.  

 

Table 1: Contingency Matrix 

VERIFICATION PA N Total 

PA 18 3 21 

N 0 8 8 

Total 18 11 29 



 

Table 2: Matching Observations of Sampling Points 

X Y Class(predict) Class(actual) 

340005.4 410873 1 1 

337804.4 412888 1 1 

337762.4 411793 1 1 

336964.9 409286 1 1 

339225.4 411509.5 1 1 

336486.9 411298.5 1 1 

341262.4 410767.5 1 1 

339485.4 411617 1 1 

340030.4 403893.2 1 1 

341782.9 399760.7 1 1 

342307.4 399716.7 1 1 

342941.4 402003.7 1 1 

343463.2 412179.5 1 1 

340588.2 411629 1 1 

341341.7 413795.5 1 1 

343287.7 411321 1 1 

341993.7 412244 1 1 

342397.7 412098 1 1 

334997.4 409738.5 1 2 

339490.2 413190 1 2 

343313.2 410626 1 2 

337346.4 409247.5 2 2 

344007.4 401020.7 2 2 

339691.9 401792.2 2 2 

341213.9 399208.2 2 2 

339590.9 404781.7 2 2 

340391.9 403196.2 2 2 

339952.2 413568 2 2 

339198.2 414563.5 2 2 

 

Out of 29 samples, 26 were correctly classified. The kappa statistics values indicate that the result 

calculated is substantial as shown as: 

 

Observed agreement,  Po  = (18+8) / 29 

    = 0.8966 

 

Kappa values,  K  = (Po - Pc) / (1 - Pc) 

  = (0.8966 - 0.5541) / (1 - 0.5541) 

  = 0.7680 

 

Expected agreement,  Pc  = [(18/29) x (21/29)] + [(11/29) x (8/29)] 

    = 0.5541 

 

The kappa statistic is a measure of how closely the instances classified by the machine learning 

classifier matched the data labelled as ground truth, controlling for the accuracy of a random 

classifier as measured by the expected accuracy. Kappa result be interpreted as Table 3.  

 



 Table 3: Kappa Values Indicator 

Kappa values Description 

≤ 0 no agreement 

0.01–0.20 none to slight 

0.21–0.40 fair 

0.41– 0.60 moderate 

0.61–0.80 substantial 

0.81–1.00 almost perfect agreement 

 

As recommendations, in order to gain better segmentation result, additional precaution such as 

proper calibration for satellite data should be carried out. For example, radiometric calibration 

improves the interpretability and quality of remote sensed data and corrections are particularly 

important when comparing multiple data sets over a period of time (Yang and Lo, 2000). In 

addition, atmospheric calibration can minimize the effects of the atmosphere to the image which 

can provide more accurate information (Gandhimathi, 2012). Occlusion issue such as cloud cover, 

shadow and image background require further study to be labelled correctly whether to be include 

in the ground truth’s sample or to be exclude from the image’s sample. 

 

In addition, the training samples containing the expected segmentation labels should be in large 

number and balance for each label. Ideally, all categories to be labelled should have an equal 

number of observations (Johnson et al., 2019). In this study, the PT category is imbalanced which 

can be detrimental to the learning process because the learning is biased in favour of the dominant 

classes.  

 

The use of optical satellite data together and radar data as well as multi-date and multi-polarization 

should be included in in-depth learning (Soria-Ruiz et al., 2010). Since, many studies show that 

the combined utilization of optical and radar imagery information improve the classification 

accuracy over those obtained using either type of image on its own. 

 

4.0 CONCLUSION 

 

In conclusion, deep learning technique using FCN segmentation is able to semantically segment 

the paddy cultivation area into three (3) categories which are i) active paddy parcel (PA) including 

four (4) major paddy-planting activities which are ploughing, irrigating, planting and harvesting; 

ii) miscellaneous paddy parcel (PT); and iii) non-paddy areas (N) at plot level with accuracy of 

89.66%. Various aspect in preparing training data can be explored in the future in order to improve 

the deep learning semantic segmentation result.   
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