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ABSTRACT: Data fusion is an effective way to solve the limitation of hyperspectral satellites on 

temporal and spatial resolution. It is of great significance to discuss the fusion effects of different 

methods on GF-5 hyperspectral data for information mining and promotion application of GF-5 

hyperspectral data.In this study, based on the principle that the algorithm is easy to use and 

suitable for generalization, six fusion methods, GS (Gram-Schmidt), GSA (GS Adaptive), CNMF 

(Coupled Non-negative Matrix Factorization), CRISP-B, CRISP-W (Color Resolution 

Improvement Software Package with Butterworth or Wavelet transform), GLP (Generalized 

Laplacian Pyramid) are respectively used to perform fusion experiments on GF-5 hyperspectral 

data and multispectral data from BJ-2, GF-2, and GF-1/1C/1D domestic satellites. Visual 

interpretation, five indicators (Correlation Coefficient, Universal Image Quality Index, Spectral 

Angle Mapper, Erreur Relative Globale Adimensionnelle de Synthèse and Peak Signal to Noise 

Ratio), classification application and time costs are used to comprehensively evaluate the fusion 

results.The results show that the fusion image series are the same and the smaller the spatial 

resolution difference is, the better the fusion result is. CRISP-B, CRISP-W, GLP can achieve a 

good balance in improving spatial resolution and spectral fidelity. In terms of spatial 

reconstruction, GLP is slightly better and more stable, while CRISP-B and CRISP-W are more 

stable and effective in maintaining spectral information. The data source will have a certain impact 

on the fusion method. In the tasks that require high spectral fidelity, such as spectral feature 

information extraction and analysis, GLP is more suitable for the fusion of homologous data (such 

as GF-5 and GF-1/1C/1D/2). When the multi-source images (GF-5 and BJ-2) are merged, CRISP-

W is preferred. CNMF has a certain degree of color distortion and takes a long time to run. GSA 

and GS have the worst fusion effect. Both the spectral retention and the spatial resolution 

improvement ability of GSA are more stable than GS’s. Based on small sample, the classification 

effect of CRISP-B fusion result is stable and high-accuracy. The GSA fusion results are rich in 

spatial details. Although the spectral distortion is relatively serious, it also increases the spectral 

distinction of the ground objects, which is still suitable for accurately drawing buildings, 

roads.This study provides method decision support for the fusion of GF-5 hyperspectral data and 

other domestic satellite multispectral data, which is helpful for the application and promotion of 

GF-5 hyperspectral data. 
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1. Introduction 

The Gaofen-5 (GF-5) satellite was successfully launched on May 9th, 2018. It is the first 

satellite in China to achieve high spectral resolution observation in the Major Project of High 

Resolution Earth Observation System, and it is the world’s first full-spectrum hyperspectral 

satellite to make comprehensive observations of the atmosphere and land (Sun et al., 2018). The 

spatial resolution of GF-5 hyperspectral data is 30 meters (Liu et al., 2018). Compared with 

multispectral satellites such as Gaofen-1 (GF-1) and Gaofen-2 (GF-2), its spatial resolution is still 

insufficient in many applications (Li et al., 2018). Using spatial-spectral fusion methods to fuse 



hyperspectral data with panchromatic or multispectral images (MSI) is an effective technical 

method to improve the spatial resolution of hyperspectral images (HSI) (Tong et al., 2014). 

Therefore, it is of great significance to discuss the fusion effects of different methods on GF-5 

hyperspectral data for information mining and promotion application of GF-5 hyperspectral data. 

Yokoya et al. studied the fusion performance of the latest 10 fusion methods on hyperspectral 

and multispectral data (Yokoya et al., 2017). This study provides a good direction for the fusion 

of hyperspectral and multispectral data. However, this study only used simulated hyperspectral 

data, so the conclusion was limited in practical applications, such as different hardware design of 

GF-5 imager, different spatial resolution, and actual acquisition geometry. Ren Kai et al. fused 

GF-5 hyperspectral data with GF-1, GF-2, Sential-2A multispectral data, and comprehensively 

evaluated the performance of nine fusion methods (Ren et al., 2020). However, it involves fewer 

domestic multi-spectral satellite data sources, such as not involving Beijing-2 (BJ-2), GF-1C, GF-

1D, etc. 

In this study, based on the principle that the algorithm is easy to use and suitable for 

generalization, six fusion methods, Gram-Schmidt (GS), GS Adaptive (GSA), Coupled Non-

negative Matrix Factorization (CNMF), Color Resolution Improvement Software Package with 

Butterworth (CRISP-B) or Wavelet transform (CRISP-W), Generalized Laplacian Pyramid (GLP) 

are respectively used to perform fusion experiments on GF-5 hyperspectral data and multispectral 

data from BJ-2, GF-2, and GF-1/1C/1D domestic satellites. Visual interpretation, five indicators, 

including Correlation Coefficient (CC), Universal Image Quality Index (UIQI), Spectral Angle 

Mapper (SAM), Erreur Relative Globale Adimensionnelle de Synthèse (ERGAS) and Peak Signal 

to Noise Ratio (PSNR), and classification application as well as time costs are used to 

comprehensively evaluate the fusion results. 

This study provides method decision support for the fusion of GF-5 hyperspectral data and 

other domestic satellite multispectral data, which is helpful for the application and promotion of 

GF-5 hyperspectral data. 

2. Experiment 

The multispectral data of GF-1/1C/1D, GF-2, and BJ-2 from Poyang Lake, the Yellow River 

estuary, and Dongting Lake area, as well as GF-5 hyperspectral data of the same area at similar 

time were fused separately. The data are shown in Table 1. 
Table 1 Experiment data 

ID Area 
Center 

Longitude 

Center 

Latitude 

Multispectral 

Sensor (Spatial 

resolution) 

Date 

Hyperspectral 

Sensor (Spatial 

resolution) 

Date 

A Poyang Lake 116.39E 28.77N BJ-2 (4m) 20181002 

GF-5 

(30m) 

20181005 

B Dongting Lake 112.63E 28.67N GF-2 (4m) 20181005 20181005 

C Poyang Lake 116.31E 28.75N GF-1 (8m) 20181006 20181007 

D Poyang Lake 116.44E 28.72N GF-1C (8m) 20181008 20181007 

E 
The Yellow 

River estuary 
118.94E 37.60N GF-1D (8m) 20181103 20181101 

F Dongting Lake 112.63E 28.67N GF-1D (8m) 20181006 20181005 

The experiment data includes typical features such as bare soil, buildings, roads, water bodies, 

farmland, breeding areas, paddy field and farmland. The image data are all Level-1 products, and 

the pixels are radiance values. ENVI is used to preprocess each group data (A-F) separately. 

Firstly, RPC orthorectification module is used to orthorectify the multispectral and hyperspectral 

data, the GF-5 hyperspectral data is resampled to 4m in the A-B group, and 8m in the C-F group. 

Then multispectral data is regarded as the reference image and the hyperspectral data as the image 

to be registered. The homonymy points are selected, and each group of images are registered. 

Finally, the same area of 400 × 400 pixels is selected for fusion experiments.  

Among them, the filter function of GS is the spectral response function; the preset pure pixels 

number of CNMF is automatically determined by the virtual dimension method; the CRISP cut-

off frequency is 20, and the number of wavelet filter layers of the CRISP-W is 3; GLP uses the 



least square method to calculate the regression coefficient matrix. 

3. Results 

3.1 Visual analysis 

In order to facilitate visual interpretation and qualitative evaluation, the fusion results are 

displayed in true color images with the same band combination (GF-1/1C/1D, R: Band3 680nm, 

G: Band2 576nm, B: Band1 502nm; GF-2, R: Band3 660nm, G: Band2 555nm, B: Band1 485nm; 

BJ-2, R: Band3 635nm, G: Band2 550nm, B: Band1 475nm; GF-5 and fusion image, R: Band59 

638.4nm, G: Band38 548.47nm, B: Band17 458.59nm), the stretching method also remains the 

same (Fig.1). 

In general, GS cannot effectively improve the spatial resolution, and the fusion result is the 

fuzziest, especially in A, B, C, D, and F, where the ground features are broken and complex. 

CNMF has obvious color distortions, which are shown in the six groups of experiments. Both 

GSA and GLP can effectively improve the spatial resolution. The texture of the ground features 

is clearer, but the performance of the color fidelity is slightly different. In B, C, E, and F, the color 

of the GSA fusion result is similar to the multispectral image. The color of the GLP fusion result 

is closer to the hyperspectral data, which shows to a certain extent that the spectral fidelity of GLP 

is better than GSA. The fusion results of CRISP-B and CRISP-W methods are relatively close, 

and the hue is natural. All 6 groups of experiments show good spectral retention ability, but the 

spatial resolution improvement ability is not as good as GLP.  

In summary, when the types of ground boundary rules are relatively simple, the six methods 

are not much different. When the type of ground fragmentation is complex, the spectral retention 

ability of GLP, CRISP-B, CRISP-W is better, and the spatial resolution improvement ability of 

GLP, GSA is better. GS cannot effectively improve the spatial resolution, and there is color 

distortion in the CNMF fusion results. 

3.2 Index evaluation 

Table 2 shows the relevant index values of the results generated based on different 

experimental data and different fusion methods. In longitudinal comparison, it can be seen that 

groups C, D, E, and F are closer to groups A, B. CC, and UIQI are closer to 1; PSNR is larger, 

and SAM is smaller. That is, the fused image is more related to the reference image, the brightness 

and contrast are more similar, and the spatial reconstruction quality and spectrum retention ability 

are better. This is because the two groups of experiments in A and B are all fused with a 

multispectral image with a spatial resolution of 4m and a hyperspectral image with a spatial 

resolution of 30m, while the four groups of experiments with C, D, E, and F are all 8m 

multispectral images and 30m hyperspectral image fusion. The ERGAS performance is relatively 

abnormal. This is because the data in Group E has a large range of water, and the average pixel 

value in the image band is low, which makes the ERGAS value too large. Therefore, when 

compared between experimental groups, the ERGAS index should not be relied on too much. It 

is not difficult to find that GF-2 is better than BJ-2 data in the fusion experiment with a spatial 

resolution of 4m in multispectral data; and in the 8m experiment, GF-1D data performs better. In 

summary, the smaller the difference in the spatial resolution of a group of fused images, the better 

the fusion effect. When fusing GF-5 hyperspectral data with 4m multispectral data, GF-2 can be 

preferentially selected, and when fusing with 8m multispectral data, GF-1D can be preferentially 

selected. A horizontal comparison, that is, a comparison between different fusion methods. In 

terms of spatial reconstruction, GLP is the best. The performance of CRISP-B and CRISP-W are 

relatively good. Especially when fusing GF-5 and BJ-2, in these three fusion results, CC have 

reached 0.84; UIQI have reached 0.81 and PSNR are above 24.5. This shows that the image source 

has little influence on the spatial reconstruction ability of CRISP-B, CRISP-W, and GLP. In terms 

of spectral retention, CNMF, GLP, CRISP-B and CRISP-W all showed good results. CRISP-W 

is slightly better than CRISP-B; the average of both SAM are higher, and the standard deviation 

are very low, thus the performances are stable. GLP and CNMF have the highest SAM average, 

but the standard deviation is large, which is mainly affected by the A group multi-source fusion  



 
Note: On the left, A-F number the experienments and the sensors noted in brackets are the multispectral data sources.  

Fig.1 Fusion results of different methods and data  



Table 2 Evalution Indexes of fusion results 

CC GS GSA CNMF CRISP-B CRISP-W GLP Mean 

A 0.59  0.74  0.75  0.84  0.84  0.87  0.77  

B 0.92  0.83  0.86  0.88  0.89  0.94  0.89  

F 0.94  0.89  0.87  0.93  0.93  0.92  0.91  

E 0.92  0.92  0.92  0.96  0.96  0.95  0.94  

D 0.97  0.94  0.91  0.96  0.96  0.96  0.95  

C 0.97  0.95  0.94  0.95  0.95  0.96  0.95  

Mean 0.89  0.88  0.87  0.92  0.92  0.93   

Std 0.13  0.07  0.06  0.04  0.04  0.03   

UIQI GS GSA CNMF CRISP-B CRISP-W GLP Mean 

A 0.58  0.70  0.74  0.81  0.82  0.85  0.75  

B 0.91  0.81  0.85  0.87  0.88  0.93  0.88  

F 0.94  0.88  0.86  0.92  0.93  0.91  0.91  

E 0.92  0.91  0.92  0.96  0.96  0.95  0.94  

D 0.97  0.94  0.91  0.95  0.96  0.96  0.95  

C 0.97  0.95  0.93  0.94  0.95  0.96  0.95  

Mean 0.88  0.87  0.87  0.91  0.91  0.93   

Std 0.14  0.09  0.06  0.05  0.05  0.04   

PSNR GS GSA CRISP-B CRISP-W CNMF GLP Mean 

A 21.57  21.18  24.54  25.01  23.39  25.17  23.48  

B 32.21  23.92  25.84  26.55  26.28  29.00  27.30  

E 27.61  26.79  29.74  30.06  27.58  29.03  28.47  

F 38.78  27.36  29.29  29.74  28.23  28.76  30.36  

C 34.19  29.72  29.44  30.33  29.66  31.37  30.79  

D 32.91  30.23  31.16  31.85  29.54  31.55  31.21  

Mean 31.21  26.53  28.34  28.93  27.45  29.15   

Std 5.42  3.17  2.34  2.36  2.15  2.11   

SAM GSA GS CNMF GLP CRISP-B CRISP-W Mean 

A 4.49  4.31  2.85  2.77  2.33  2.17  3.15  

B 3.20  3.74  1.79  1.78  2.36  2.11  2.50  

F 2.48  2.36  1.49  2.06  2.13  1.95  2.08  

E 2.56  2.20  1.98  1.85  1.83  1.75  2.03  

C 2.20  1.67  1.94  1.72  2.13  1.88  1.92  

D 1.94  1.06  1.81  1.68  1.83  1.63  1.66  

Mean 2.81  2.56  1.98  1.98  2.10  1.91   

Std 0.84  1.13  0.42  0.38  0.21  0.19   

ERGAS GS GSA CNMF GLP CRISP-B CRISP-W Mean 

E 4.14  4.10  3.49  3.50  3.26  3.10  3.60  

F 2.31  2.29  1.80  1.91  1.80  1.68  1.97  

C 2.07  2.12  2.00  1.71  2.04  1.84  1.96  

A 2.90  2.29  1.61  1.51  1.40  1.31  1.84  

D 1.63  1.88  1.85  1.66  1.68  1.54  1.71  

B 1.67  1.55  1.05  0.87  1.15  1.05  1.22  

Mean 2.45  2.37  1.97  1.86  1.89  1.75   

Std 0.87  0.81  0.75  0.80  0.68  0.65   

Note: Based on each index, the average value of the index indicating the fusion result from white to red is low to high, and the 

standard deviation of the index indicating the fusion result from white to blue is small to large. From top to bottom, white to green 

indicates that the index values of the experimental groups become better. In each set of experiments for each index, the better the 

index value, the higher the gray level. CC, UIQI, and PSNR are all band averages, and SAM is the pixel average. 

 

experiment. Therefore, in order to better maintain the spectral information, GLP can be 

preferentially selected when fusing between homologous data, and CRISP-W is preferentially 

used when fusing between multi-source data. The spatial reconstruction ability and spectral 

retention ability of GS and GSA are both poor, especially in Experiment A. Although the GS 

method performs better in the four groups (BCDF) experiments, such as the average of the CC 

and UIQI of the four groups are about 0.95, the average value of PSNR reaches the highest, but 

this is because the GS method fails to effectively remove the noise value of the hyperspectral data. 

The content of this part will be explained in detail in the discussion part. In addition, GSA is more 

stable than GS in both spectral retention and spatial resolution improvement. ERGAS is a 

comprehensive index, which has certain advantages when using images with certain registration 

errors as reference images. In summary, combined with the comprehensive index ERGAS, it can 

be concluded that the CRISP-W method is the best and the most stable; CRISP-B and GLP are 



slightly less effective; CNMF is in the middle, and GS and GSA are the worst. 
Table 3 Runtimes comparison of different fusion methods 

Test (s) GS GSA CRISP-W GLP CRISP-B CNMF 

A 

ENVI 

Interaction 

5.4 8.6 13.5 16.4 417.3 

B 5.0 8.6 13.4 16.1 422.9 

C 5.0 8.7 13.3 16.4 426.0 

D 5.0 8.6 13.4 16.1 474.2 

E 5.0 8.8 13.6 16.7 466.0 

F 5.0 8.7 14.7 16.6 442.4 

Mean 5.1 8.7 13.7 16.4 441.5 

As can be seen from Table 3, the running time of GSA, CRISP-W, GLP, CRISP-B, and 

CNMF increases in sequence, and the running time of CNMF is too long to be desirable. The 

operating costs of the other five methods are within the acceptable range. 

3.3 Classification application 

The landscape type of image has a great influence on the evaluation results. The diversity of 

landscape size and natural features leads to highly variable spatial and spectral information. Table 

4 shows the label categories in the A, B, C, D, and F study areas and the number of specific 

samples used for training and testing. The number of samples in each category is equal, which 

avoids the different proportion of ground features to affect the evaluation results. There are few 

types of features in the E study area. In order to ensure the effectiveness of the method comparison, 

E is not classified. In addition, the classification results of fusion images can be identified more 

effectively when the ground truth is fine or the main ground features are boundaries. 

Table 5 shows the original multispectral and hyperspectral images in different study areas, 

the overall classification accuracy of each fusion result, and Kappa coefficient. The classification 

result of GS is the worst, because GS has the worst spatial resolution improvement ability, which 

affects classification, especially fine classification. The effects of CNMF, GLP and CRISP-W are 

centered, among which, groups C, D, and F are better than groups A and B. This may be due to 

the small difference in spatial resolution of the images to be fused in groups C, D, and F, and the 

fusion results are relatively good, so the classification results are relatively better. In the two 

groups A and B, GSA showed strong superiority. Although the spectral retention of the GSA 

fusion result is poor, the component substitution increases the spectral divergence of the ground 

features. It is also found in visual analysis, the spatial information of GSA is closer to the 

multispectral image, and the spatial resolution has been effectively improved, thereby improving 

the precision of fine classification. CRISP-B has shown good results in the classification of all 

fusion results. When the number of samples is small, the overall accuracy of the original GF-5 

classification results is improved by about 4 percentage points. Figure 2 shows the ground truth, 

classification results of hyperspectral and multispectral images, and CRISP-W, GSA, CRISP-B 

fusion image classification results with relatively good results. It can be seen that in the two groups 

of A and B, the road division by GSA is very clear, and the roads separated by CRISP-B and 

CRISP-W are thicker, and some are in the form of sheets. The green land and bare soil separated 

by CRISP-B etc. are basically lumpy. In the two groups C and D, the classification results of GSA 

are relatively broken. In group F, there is high classification accuracy of buildings and roads by 

GSA fusion, making the overall classification effect good. 

In summary, the classification accuracy of different fusion methods is not significantly 

different for water bodies with a large degree of discrimination. For buildings and roads with 

broken ground features and borders that are difficult to identify, the classification effect of GSA 

fusion results is the best, but GSA will also partially break up flaky ground objects such as bare 

soil and farmland. The result of CRISP-B fusion results is stable, and the overall classification 

accuracy is high. 

 

 

 

 



Table 4 Evalution Indexes of fusion results 

Test 

(pixel

s) 

Bearing land Building Roads Water body farmland 
Breeding 

area 
Paddy field 

Tr Te Tr Te Tr Te Tr Te Tr Te Tr Te Tr Te 
A 30 970 30 970 30 970 30 970 30 970 / / / / 
B 30 970 30 970 30 970 30 970 30 970 / / / / 
C 30 970 30 970 30 970 30 970 30 970 30 970 30 970 
D 30 970 30 970 30 970 30 970 30 970 30 970 30 970 
F 30 970 30 970 30 970 30 970 30 970 30 970 / / 

Note: Tr means train; Te means test. 

 

Table 5 Overall Occuracy (OA) and Kappa coefficient 

Criterion Test HSI MSI GS CNMF GLP CRISP-W GSA CRISP-B 

OA (%) 

A 81.32 87.96 87.84 87.46 85.57 86.04 88.72* 88.39* 

B 81.09 82.08 78.14 79.98 81.24 81.05 88.29*** 83.59* 

C 88.26 86.41 86.52 87.78 88.06 88.92* 84.36 90.06*** 

D 88.47 90.66 90.03 92.64* 92.53* 92.75* 90.24 93.43** 

F 88.76 90.55 88.47 91.56 90.86 92.11* 94.06*** 93.25** 

Kappa 

A 0.767 0.850 0.848 0.843 0.820 0.826 0.859* 0.855* 

B 0.764 0.776 0.727 0.750 0.766 0.763 0.854*** 0.795* 

C 0.863 0.841 0.843 0.857 0.861 0.871* 0.818 0.884** 

D 0.866 0.891 0.884 0.914* 0.913* 0.916* 0.886 0.923** 

F 0.865 0.887 0.862 0.899 0.890 0.905* 0.929*** 0.919** 

Note: the more *, the better the classification effect. 

4. Discussion 

(1) The CRISP model uses Wavelet and Butterworth filters to perform the frequency 

domain filtering process. The advantage of wavelet filter is that the processing speed is relatively 

fast, but when the image registration accuracy is low, there will be obvious "patches" in the fused 

image. Butterworth filter is relatively less affected by the accuracy of registration, showing a 

strong stability. In this case, the experimental data registration accuracy is higher, CRISP-W effect 

is better than CRISP-B, which shows the necessity of strict registration before fusion. However, 

whether it is a Wavelet filter or a Butterworth filter, different fusion images need different filter 

parameters to achieve the best fusion effect, thereby making it difficult to choose the basis 

function, filter cut-off frequency, and number of decomposition layers. The selected parameters 

are not ideal, and will cause further information loss in the fusion image space and spectrum. The 

main reason for these problems is that the image reconstruction process in the CRISP model is 

entirely based on mathematical statistics theory, and statistical optimization is performed 

mathematically. The lack of a clear physical meaning makes it easy to cause unstable results. In 

addition, in the CRISP model, the simulation process of the high spatial resolution hyperspectral 

image and the subsequent filtering process are completely independent two parts. If the 

hyperspectral data with high spatial resolution can be directly reconstructed without the need for 

filter fusion process, it will be an important improvement to the CRISP algorithm. 

(2) In the process of band transformation, the GSA fusion algorithm will cause loss of 

spectral information and produce spectral distortion. A good fusion algorithm can not only 

increase the spatial texture information of the image, but also keep the original information of the 

spectrum. That is, no or little information distortion occurs. However, there is no absolute 

correlation between the fusion quality of various fusion methods, that is, spectrum, spatial fidelity 

and remote sensing applications. The results of this experiment show that the GSA spectrum is 

seriously distorted, but at the same time increases the spectral separation of ground features, and 

is particularly suitable for the classification of roads and buildings. In the next step, the fusion 

algorithm can be further analyzed for different application purposes such as vegetation monitoring, 

land productivity inversion, environmental assessment, mineral exploration, and target detection. 



 
Note: A-D and F number the experienments. The sensors noted in brackets are the multispectral data sources. 

Fig.2 Classification result 



(3) Observing the original hyperspectral image, it is found that except for group E, bands in 

the front part of other five groups images have different levels of noise and stripes, and the quality 

is poor. It can also be seen from Figure 3 (methods are discussed here of which the spectrum 

holding effect is better and most stable), and the CC trend of Group E is the steadiest. In the other 

five sets of experiments, the CC values of the front bands of CRISP-B and CRISP-W all have 

increasing trends. This is because based on the fusion of CRISP-B and CRISP-W, image noise 

and stripes are greatly improved, which is quite different from the original image (Figure 4). 

Therefore, the CC value is lower, which is in line with the actual situation. However, the GS 

method has remained flat; that is, it is very similar to the original noisy image, and does not have 

the effect of CRISP-B and CRISP-W to remove noise. In the A, B, C, and F experiments, the CC 

of the GS method has a steep downward trend after about the 80th band (center wavelength 

728.06nm), while other methods have an upward trend and maintain a relatively stable. The state, 

to a certain extent, shows that CRISP-B and CRISP-W have a retention advantage over the GS in 

the infrared band. 

(4) The CNMF model meets the non-negative constraints of the linear mixed model. Because 

the objective function has obvious non-convexity, the model has a large number of convergence 

points; it may converge to a local minimum, resulting in a non-unique decomposition matrix. This 

may be the reason for the poor fusion effect of CNMF fusion in this case. In addition, CNMF 

needs to preset the number of unmixed end-members. Different preset methods will lead to 

different results. The influence of the preset end-member methods on the fusion result can be 

further explored. 

 
Fig.3 CC trend of different bands 

 
Fig.4 The first band image of origin and fusion result of test A 

 

 

 



5. Conclusion   

This study selects six simple and easy-to-promote hyperspectral fusion methods to fuse 

multiple domestic satellite multispectral data with GF-5 hyperspectral data. Through visual 

analysis, five classic evaluation indicators, classification application accuracy, and running time 

cost, the advantages and disadvantages of the fusion method are comprehensively analyzed. The 

results show that the fusion image series are the same and the smaller the spatial resolution 

difference is, the better the fusion result is. CRISP-B, CRISP-W, GLP can achieve a good balance 

in improving spatial resolution and spectral fidelity. In terms of spatial reconstruction, GLP is 

slightly better and more stable, while CRISP-B and CRISP-W are more stable and effective in 

maintaining spectral information. The data source will have a certain impact on the fusion method. 

In the tasks that require high spectral fidelity, such as spectral feature information extraction and 

analysis, GLP is more suitable for the fusion of homologous data (such as GF-5 and GF-

1/1C/1D/2). When the multi-source images (GF-5 and BJ-2) are merged, CRISP-W is preferred. 

CNMF has a certain degree of color distortion and takes a long time to run. GSA and GS have the 

worst fusion effect. Both the spectral retention and the spatial resolution improvement ability of 

GSA are more stable than GS’s. Based on small sample, the classification effect of CRISP-B 

fusion result is stable and high-accuracy. The GSA fusion results are rich in spatial details. 

Although the spectral distortion is relatively serious, it also increases the spectral distinction of 

the ground objects, which is still suitable for accurately drawing buildings, roads. This study 

provides a basis for method selection for the application research of GF-5 hyperspectral data in 

fusion.  
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