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ABSTRACT: Changes in the distribution of aerosol optical depth (AOD) are closely related to 

climate change, air quality, environmental pollution and human health. However, null values 

often appear in regions of AOD data retrieved by satellite. To address this problem, we propose 

geographically and temporally weighted regression with principal component analysis (PCA-

GTWR), which aims to make full use of the advantages of geographically and temporally 

weighted regression (GTWR) and principal component analysis (PCA). Taking the prediction of 

the AOD in Beijing as an example, the PCA-GTWR model predicted that the monthly average 

AOD data would have an MAE, RMSE, R2, R𝑗
2 and regression coefficient of 0.0705, 0.0954, 

0.8705, 0.8703, and 0.7913, respectively, in April 2015; 0.0587, 0.0757, 0.8628, 0.8627, and 

0.7939, respectively, in May 2015; and 0.1059, 0.1376, 0.8185, 0.8184 and 0.7633, respectively, 

in June 2015. This result shows that the PCA-GTWR model can be effectively applied to AOD 

data prediction. The research content of this paper is of great significance to research on climate 

change, air quality and environmental pollution. 

 

1. INTRODUCTION  

 

Aerosol optical depth (AOD) is an important property of aerosols and is the main physical 

quantity that characterizes atmospheric turbidity (Qin, et al. 2018, Wang, et al. 2019). The 

distribution of AOD is closely related to climate change, air quality, environmental pollution, and 

human health(Kaufman, et al. 2002, Liu, et al. 2018). Therefore, accurate observations of the 

AOD are of great significance in aerosol research and applications. Observations of aerosols 

include ground observations and satellite observations. Ground observations are mainly obtained 

from the Global Automated Observation Network (AERONET), the European Aerosol Research 

Lidar Network (EARLINET), and the Micropulse Lidar Network (MPLNET)(Liu, et al. 2011). 

Unlike ground observations, satellite observations can enable wide-range monitoring with 

satisfactory spatial and temporal resolution (Kaufman, Tanré and Boucher 2002). Satellite-based 

sensors that can obtain AOD observations include the multiangle imaging spectroradiometer 

(MISR), the sea-viewing wide field-of-view sensor (SeaWiFS), ozone mapping imaging (OMI), 

the visible infrared imaging radiometer (VIIRS), the medium-resolution imaging spectrometer 

(MODIS), and the polarization and directionality of the Earth’s reflectances (POLDER) 

instrument (Fan, et al. 2019, Yang, et al. 2017). There have been many studies on the synergistic 
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retrieval of AOD data with multisensor observations to improve monitoring accuracy and 

coverage(Singh, et al. 2017, Tang, et al. 2016). Currently, studies of AOD data reconstruction 

are relatively rare under various situations(Davies and North 2015, Puttaswamy, et al. 2013). 

As the AOD varies with time and geographical location, it has temporal and spatial instability, 

which leads to uncertainty in future climate predictions (Davies and North 2015). Moreover, the 

driving factors of the AOD are diverse, so the multicollinearity between these factors should be 

eliminated when studying the driving factors of aerosols (Sun, et al. 2014). To address the above 

problems in the AOD prediction process, we investigate principal component analysis (PCA), 

which represents each principal component as a linear combination of the original data, removes 

the driving factor multicollinearity, and uses fewer principal components to reflect more of the 

information of the original indicators. This multivariate statistical analysis method has been 

widely used in many fields. However, traditional PCA does not consider the temporal and spatial 

relationships in data(Qiao, et al. 2017, Ramesh Kumar 2017). Geographically weighted 

regression (GWR) is a local form of linear regression used to model relationships among spatial 

changes. The spatial weights among independent and dependent factors are used to detect 

nonstationarity in spatial relationships by embedding spatial information in a linear regression 

model (Fotheringham, et al. 1998, Huang, et al. 2010). Geographically and temporally weighted 

regression (GTWR) extends the GWR model to the GTWR model of panel data sets by separating 

the selection of the optimal temporal and spatial bandwidths. Since it was introduced, the GTWR 

model has become the most popular method of spatiotemporal modeling and has been applied in 

many fields (Chu and Bilal 2019, Dong, et al. 2019). 

The GWR method effectively solves spatial problems in regression analysis. The PCA method 

effectively reduces the redundancy and multicollinearity problems of auxiliary variables. Guo, et 

al. [7]) used geographically weighted regression with principal component analysis (PCA-GWR) 

to estimate soil organic carbon density (SOCD). The results show that PCA can play an important 

role in reducing the redundancy and multicollinearity of auxiliary variables and that GWR had 

the highest prediction accuracy among the four models proposed. In this paper, a geographically 

and temporally weighted regression method with principal component analysis (PCA-GTWR) is 

proposed. This method represents principal components as linear combinations of the original 

data; this strategy can effectively eliminate multicollinearity, reflect more of the original index 

information with fewer principal components, reduce the information loss in the original data, 

and improve the dimensionality reduction effect and accuracy of the model estimation of the 

AOD. At the same time, the model incorporates the spatiotemporal characteristics of the data into 

the regression model, which effectively solves the problem of the spatiotemporal nonstationarity 

of the regression model and demonstrates the superiority of the PCA-GTWR method for 

estimating AOD. The PCA-GTWR model is used to predict high-precision AOD values, 

providing a reliable basis for research on climate change, air quality, environmental pollution, 

and human health. 

 

2. STUDY AREA AND DATA 

 

The research area of this article is Beijing (115.7°E-117.4°E, 39.4°N-41.6°N). As the capital of 

China, Beijing's rapid economic development has aggravated air pollution, and the concentration of 

PM2.5-based particulate matter has increased sharply. Temporal and spatial changes in AOD are 

closely related to PM2.5, climate change, and environmental pollution. Therefore, it is of great 

significance to carry out complete and accurate AOD predictions in this region. 

The MODIS 3 km Level 2 AOD products (MYD04_3K and MOD04_3K) of both the Terra and 

Aqua platforms from April 1, 2015, to June 30, 2015, were obtained from the NASA website 

(https://ladsweb.nascom.nasa.gov/data). Meteorological data (including wind speed, temperature, 

humidity, and air pressure) were obtained from the China meteorological data network 



(http://data.cma.cn/site/index.html). In this study, the hourly observation data same as the temporal 

coverage of MODIS data were downloaded. The geographical distribution of the data from 

meteorological ground monitoring stations in the study area is shown in Figure 1. The geographic 

data (including the digital elevation model (DEM), slope and aspect) are from the geospatial data 

cloud website (http://www.gscloud.cn/). The resolution of the elevation, slope and aspect data used 

in this paper is 90 m. 

 
Figure 1 Distribution of meteorological data monitoring stations in Beijing 

 

3. METHODOLOGY 

 

3.1 Technical Route 

 

To unify the spatial and temporal resolution, the AOD, meteorological and geographic data were 

preprocessed and projected to the same spatial resolution and coordinates. The average-value 

method was used to obtain the monthly average of each index in the AOD data and meteorological 

data. Regarding the spatial resolution, the AOD and geographical data are surface data, and the 

meteorological data are site data, which requires further processing. The meteorological data were 

interpolated to 3 km * 3 km grid data with the kriging method. The AOD, meteorological and 

geographic data of the center point of the 3 km * 3 km grid were extracted. 

The PCA-GTWR method fully combines the advantages of PCA and GTWR. The technical 

process of PCA-GTWR is shown in Figure 2, and the corresponding steps are as follows: 1) Use 

the Pearson correlation coefficient to test the correlation of each factor, and remove the factors that 

have a small correlation with the dependent variable. 2) Perform PCA on the remaining impact 

factors to obtain n new comprehensive evaluation indicators. 3) From the n new comprehensive 

evaluation indicators, select the first m evaluation indicators with a cumulative contribution 

exceeding 85% as the input variables of the GTWR model, and estimate the values of the 

dependent variables. 4) Using the test results, calculate the mean absolute error (MAE), root-mean-

square error (RMSE), R-squared coefficient (R2) and corrected R-squared coefficient (R𝑗
2) as the 

four evaluation indexes to evaluate the effectiveness of this method.  

 

3.2 Principal Component Analysis 

 

PCA is a classical statistical method for analyzing the covariance structure of multiple variables 

(Viana, et al. 2006) that maps high-dimensional data to low-dimensional data (Zhao, et al. 2018). 

PCA uses orthogonal transformation to transform the covariance matrix of the original random 

vector into a diagonal matrix so that it points to the most open orthogonal directions of the 

distribution of P at the sample point, carries out dimensionality reduction on the system of 

multidimensional variables and replaces the original variables with a few principal components. 

PCA principles can be found in the literature (Qiao, et al. 2017, Ramesh Kumar 2017). 
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Figure 2 PCA-GTWR technology flowchart 

 

3.3 Geographically Weighted Regression 

 

The GWR model is an extension of the ordinary least-squares regression (OLS) model to solve 

the problem of the local estimation of parameters (Brunsdon, et al. 1996). The GWR principle is 

as follows (Nilsson 2014): 
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In formula (1), ( )1 2, , ,i i i idy x x x  are the n data sets at the point ( ),i iu v  for the dependent 

variable y and the independent variables ( )1 2, , dx x x , and ( )( ), 1,2, ,k i iu v k d =  is the 

unknown parameter at the observation point ( ),i iu v  of i . 1,2,3( ),i i n ＝  is an independent 

and identically distributed error term, usually assumed to follow an 
2(0, )N   distribution. In 

matrix notation, the estimated expression of this parameter is as follows: 
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From equation (2), the local estimate of the regression function ( )ˆ ,i iu v  is obtained at all 

observation positions; X is the independent variable matrix, Y is the dependent variable vector, 



and ,i iW u v( ) is the spatial weight matrix. The regression parameters in GWR are related to the 

geographical locations of the sample data, and the spatial weights can be represented by a 

distance function, which is referred to as a kernel function. Commonly used kernel functions 

include the Gauss function and the Bisquare function. In this paper, the Gauss function is used 

to generate the spatial weight matrix. The formula is as follows: 
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In equation (3), h is the bandwidth and ijd  is the distance between the points ( ),i iu v  and ( ),j ju v . 

Bandwidth is an important factor in calculating the spatial weight matrix. This paper uses cross-

validation (specifically, cross-validation residual sum of squares (CVRSS)) to determine the 

optimal bandwidth of the GWR. Assuming that the predicted value of iy  in the GWR is 

represented by ˆ( )y h  as a function of h, the formula for the sum of squared errors can be written 

as follows: 

 
2
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3.4 Geographically and Temporally Weighted Regression 

 

GTWR assumes that the regression coefficient is an arbitrary function of the geographic location 

and observation time and simultaneously detects nonstationarity in time and space. The principle 

of GTWR is as follows (Huang, Wu and Barry 2010): 
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In formula (5), ( )1 2, , ,i i i idy x x x  are the n sets of observations of the dependent variable y and 

the independent variables ( )1 2, , dx x x  at the observation point ( , , )i i iu v t . 

( , , )( )1,2,3 ,k i i iu t kv d ＝  is the unknown parameter at the i th observation point ( , , )i i iu v t , and 

1,2,3( ),i i n ＝  is an independent and identically distributed error term, usually assumed to 

follow an 
2(0, )N   distribution. 

With the least-squares method, the estimated regression parameter ˆ( , , )i i iu v t  and the regression 

value ˆ
iy  at ( , , )i i iu v t  can be found as: 
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In equation (7), 1 2[ , , ]T

dX x x x= , 0 01 02 0[1, , , ]T

dx x x x=  is the value of the independent 

variable at 0 0 0( , , )u v t , and ( ) 1 2, , ( , , , )i i i i i imW u v t diag   =  is the weight matrix. The 

spatiotemporal distance STd  is defined as a linear combination of the spatial distance Sd  and 

the time distance Td , and its formula is as follows: 
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In equation (8),   and   are scale factors used to balance the different effects of space and time. 

Therefore, if the scale factor is adjusted appropriately, STd  can be used to measure the 

spatiotemporal distance. The spatiotemporal distance between point 0 0 0( , , )u v t  and point 

( , , )i i iu v t  is defined as follows: 

( ) ( ) ( )
2 2 2
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The spatiotemporal weight matrix generated by the Gaussian function is as follows: 
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In equation (10), STh , Sh  and Th  are the spatiotemporal bandwidth, spatial bandwidth, and time 

bandwidth, respectively. S STh h = , and T STh h = . The bandwidth of the kernel function 

has a significant impact on the GTWR. Therefore, the key to accurate regression is choosing the 

right bandwidth (Dong, Zhang, Long, Zhang and Sun 2019). This paper uses cross-validation 

(CVRSS) to determine the optimal bandwidth of the GTWR. The calculation method is shown 

in equation (4). 

 

4. RESULTS AND DISCUSSION 

 

4.1 Correlation Test 

 

The Pearson correlation coefficient of each factor is calculated to test the correlations among 

variables and determine whether there is multiple collinearity among the independent variables. 

The Pearson correlation coefficient of the AOD for the indexes of the elevation, slope, wind 

speed, air temperature, humidity and pressure was calculated to be greater than 0.4, and the 

Pearson correlation coefficient of the AOD for the indexes of slope and aspect direction was less 

than 0.1. These two factors were removed. Among the remaining six impact factors, there were 

many Pearson correlation coefficients above 0.6. It was concluded that there were multiple 

collinearities among the explanatory variables.  

It must be determined whether the dependent variable has spatial correlations before GWTR 

model analysis is applied. This paper uses Moran’s I value to pretest the spatial correlations 

among the AOD variables. Moran’s I values of the monthly averages of the AOD in April, May, 

and June 2015 were calculated to be 0.833, 0.724, and 0.625, respectively, which revealed that 

the AOD in this study area has a strong agglomeration pattern. 
 

4.2  PCA Analysis 

 

The PCA method was used to calculate the principal component (PC), characteristic root, 

contribution degree and cumulative contribution degree of each index in the data set in April, 

May and June of 2015. The results are shown in Table 1. According to Table 1, the contribution 



degree of the first principal component (PC1) in each month is approximately 60%, the 

cumulative contribution degree of the first two principal component (PC2) is greater than 75%, 

and the cumulative contribution degree of the first three principal component (PC3) is greater 

than 85%. Therefore, this paper selects the first three PCs as the input variables of the model to 

fully reflect most of the information in the original data.  

 
Table 1 Principal component analysis results 

Time PC Eigenvalue Contribution/% Cumulative contribution/% 

April 

PC1 3.585 59.750 59.750 

PC2 0.959 15.977 75.727 

PC3 0.565 9.419 85.146 

May 

PC1 3.635 60.583 60.583 

PC2 1.156 19.266 79.850 

PC3 0.708 11.805 91.655 

June 

PC1 3.604 60.059 60.059 

PC2 1.505 25.091 85.151 

PC3 0.475 7.909 93.059 

 

4.3 Comparative Results 

 

The original monthly average AODs in April, May, and June 2015 are shown in Figure 3. Figure 

4 shows the monthly average AODs in April, May, and June 2015 calculated with the PCA-

GWR method by using the first three principal components in the principal component analysis 

results as the explanatory variables and the AOD as the dependent variable. Figure 5 shows the 

monthly average AODs in April, May, and June 2015 calculated with the PCA-GTWR method 

by using the first three principal components in the principal component analysis results as the 

explanatory variables and the AOD as the dependent variable. To evaluate the PCA-GWR and 

PCA-GTWR models, four evaluation indexes—the MAE, the RMSE, R2 , and R𝑗
2 —are 

calculated, as shown in Table 2. 

       
Figure 3 Original monthly average AOD in 2015: (a) April, (b) May, (c) June 

 

       
Figure 4 PCA-GWR prediction of monthly average AOD in 2015: (a) April, (b) May, (c) June 



       
Figure 5 PCA-GTWR prediction of monthly average AOD in 2015: (a) April, (b) May, (c) June 

 

Table 2 Comparison of the PCA-GWR and PCA-GTWR methods 

Time Model MAE RMSE R2 Rj
2 

April 

PCA-GWR 0.0761 0.1017 0.8530 0.8514 

PCA-GTWR 0.0705 0.0954 0.8705 0.8703 

Increase in PCA-GTWR prediction compared 

with that of PCA-GWR 
7.36% 6.19% 2.05% 2.22% 

May 

PCA-GWR 0.0629 0.0806 0.8445 0.8424 

PCA-GTWR 0.0587 0.0757 0.8628 0.8627 

Increase in PCA-GTWR prediction compared 

with that of PCA-GWR 
6.68% 6.08% 2.17% 2.41% 

June 

PCA-GWR 0.1087 0.1411 0.8090 0.8064 

PCA-GTWR 0.1059 0.1376 0.8185 0.8184 

Increase in PCA-GTWR prediction compared 

with that of PCA-GWR 
2.58% 2.48% 1.17% 1.49% 

 

Figures 4 and 5 show that the overall distribution trend of the monthly average AOD in April, 

May, and June 2015 using PCA-GWR and PCA-GTWR is consistent, with only a small number 

of regions having relatively obvious differences. From April to June, the distribution trend of the 

AOD in the southeast of the study area went from high to low and then from low to high. The 

distribution trend of the AOD in other areas did not change much from April to May, while the 

distribution trend from May to June was obvious. Table 2 shows that the values of the MAE, the 

RMSE, R2, and R𝑗
2 obtained by using PCA-GTWR to estimate the monthly average AOD in 

April, May, and June 2015 are better than those obtained by PCA-GWR. This shows that the 

PCA-GTWR method provides more accurate estimates of the AOD than the PCA-GWR method. 

The PCA-GTWR method proposed in this paper uses PCA to analyze the explanatory variables 

and expresses the principal components as linear combinations of the original data. It can 

effectively eliminate multicollinearity and reflect more of the original index information with 

fewer PCs. It can reduce the loss of raw data information and improve the dimensionality 

reduction effect and the accuracy of the model's estimated AOD concentration. Additionally, the 

method incorporates the spatiotemporal characteristics of the data into the regression model, 

effectively solves the spatiotemporal nonstationarity problem of the regression model, and 

demonstrates its superiority in estimating the AOD. 

The PCA-GWR method predicts the monthly average AODs in April, May, and June 2015 and 

the monthly average monitored AODs for linear regression. The PCA-GTWR method predicts 

the monthly average AODs in April, May and June 2015 and the monthly average AODs for 

linear regression analysis. The resulting graph, fitting equation and Pearson value obtained by 

regression analysis are shown in Figures 6 and 7. The regression coefficients and Pearson's r data 

values obtained by the PCA-GTWR method are greater than those obtained by the PCA-GTWR 

method, so the PCA-GTWR method has the best linear fit between the predicted AOD and the 

monitored AOD. 



 
Figure 6 Regression analysis of the PCA-GWR prediction of AOD compared with the monitored AOD: (a) April, 

(b) May, (c) June 

 
Figure 7 Regression analysis of the PCA-GTWR prediction of AOD compared with the monitored AOD: (a) 

April, (b) May, (c) June 

 

5. CONCLUSIONS 
 

With the aim of predicting the AOD in Beijing, this paper proposes geographically and 

temporally weighted regression with principal component analysis (PCA-GTWR), which makes 

full use of the advantages of both geographically and temporally weighted regression and 

principal component analysis. PCA was used to conduct dimensionality reduction on 6 

explanatory variables of the meteorological data and geographical data to obtain several principal 

components. Each PC was expressed as a linear combination of the original data, and fewer PCs 

were used to reflect more of the information from the original index than would have been 

possible with previous methods. The first three PCs obtained were input as dependent variables 

to the GTWR model to predict the AOD. The spatial and temporal characteristics of the AOD 

were considered in the regression model, which effectively solved the problem of the spatial and 

temporal nonstationarity of the regression model and improved the accuracy of the model's 

predicted AOD. The results show that the PCA-GTWR method is better than the PCA-GWR 

method in estimating the monthly average AOD. 

The PCA-GTWR model proposed in this paper has high accuracy in predicting the value of the 

AOD. This method represents the PCs as linear combinations of the original data and enhances 

the dimensionality reduction effect while effectively addressing the spatiotemporal 

nonstationarity of the AOD. PCA-GTWR can predict the value of the AOD, and it can also be 

applied in research fields involving data that are nonstationary in space and time (such as house 

prices in different regions, PM2.5, soil moisture, and climate change), thereby improving the 

accuracy of data prediction in different fields and reducing the workload of the prediction process. 
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