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ABSTRACT: We have developed a rapid simplified algorithm to estimate cloud top properties from 
infrared bands of Himawari based on machine learning. The new-generation geostationary satellite of 
Himawari-8 with Advanced Himawari Imager (AHI) provides high temporal (every 10 min) and high 
spatial resolution. CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) 
provides cloud top parameters with high accuracy, but with limited temporal-spatial resolution. This 
paper reports on a study to derive the cloud top properties from combined AHI and CALIPSO using 
Random forests (RFs) algorithm, an advanced machine learning (ML) method with better accuracy 
than that from the traditional physical algorithms. Further sensitivity and validation analyses help 
determine the optimal RF classification and regression models for predicting process. The selected 
RF regression model is found to predict cloud top properties with highly consistent with CALIPSO 
observations (correlation coefficients are 0.89、0.89、0.90 for CTH, CTP, CTT respectively). New 
algorithm provides a robust and rapid algorithm of cloud top properties and we find significant 
accuracy improvements compared to AHI. Based on the accuracy evaluation of the model estimation 
results, the characteristics of cloud top properties in time and space are analyzed, and a typical case is 
selected to study. The application of the algorithm and error analysis are carried out to evaluate the 
estimation ability of cloud top parameters. The new approach could be used to process data from 
advanced geostationary imagers for climate and weather applications. 
 

 INTRODUCTION 
 
Various cloud top properties are able to influence the balance of the earth atmosphere radiation, and 
have a significant regulatory effect on incoming and outgoing shortwave and thermal radiation [1].  
Parameters such as cloud top height, cloud top temperature and cloud top pressure are of great 
practical significance for Atmospheric Physics, meteorological support and of particular importance 
for determining longwave radiation at the surface and aviation safety [2]. Therefore, accurate 
acquisition of cloud top properties information is of great significance for quantitatively describing 
the radiation budget of the earth-atmosphere system and studying climate change [3].  
 
Satellite measurements are the most common and effective way to retrieve cloud top parameters 
because they offer continuous global information (e.g., Himawari, Fengyun-4, GEOS) with high 
accuracy. The easiest way to obtain the CTH is using a single IR channel mostly in the 11 μm 
assuming that the observed radiation is completely from the cloud. It was works well for optically 
thick clouds and large enough to fill the satellite view and the terrestrial radiation increases the 
observed IR value for thin clouds and partially fills the view. And finally causes CTH underestimated 
[4][5]. 
 
The most common way to retrieve the CTP, furthermore CTH and CTT is the CO2-slicing method 
originally invented by Wylie and Menzel 1989[6].The method select two adjacent CO2 absorption 
channels in the 15 μm because the atmosphere becomes more opaque as the wavelength approaches 
the selected bands leading observed to be sensitive to a different layer in the atmosphere [7]. And the 
method mentioned above also requires a radiative transfer model (RTM) simulation in the two 
selected channels for clear-sky radiances and additionally needs the atmospheric humidity profiles 



and temperature as inputs for a RTM. usually an RTM in cloudy skies has large uncertainties [8][9] 
with limited accuracy. It highly depends on the atmospheric temperature/humidity profiles and the 
spectral difference of cloud emissivity [10].  
 
With the development of computer technology, a wide spectrum of advanced machine learning (ML) 
techniques, such as Knearest-neighbor (KNN), random forests (RF), support vector machines(SVM), 
artificial neural network (ANN), deep learning (DL, one kind of complex ANN algorithm), etc., 
offers a possible solution to some nonlinear issues in remote sensing and geoscience fields 
[11][12][13]. It has been successfully and extensively applied in cloud products in recent years. The 
computing efficiencies of ML techniques have been much improved, offering us unprecedented 
opportunities to process large-volume data sets in near real-time systems. use advanced ML 
algorithms for model training and high efficiency prediction. A previous study [14] used a neural 
network algorithm to train and CTP and CTH for several passive sensors in polar-orbit. RFs, as the 
high-accurate and promising ML algorithms, have received increasing attention for remote sensing 
applications. Including bagging ensemble classification and regression technique, the RF algorithm 
can easily run in a parallel computing mode and capture nonlinear or complex relationships between 
predictor and predictand [15].  
 
The primary objective of this paper is to develop a rapid and unified retrieval algorithm for cloud top 
parameters from real-time Himawari-8/AHI (H08/AHI) observations, using RFs. The 
implementation of this rapid and unified cloud top algorithm is expected to improve the accuracy of 
cloud top products in East Asia, and to promote wider application of GEO meteorological satellite 
data in nowcasting applications. Cloud properties are derived in the same way for both day- and 
nighttime data because the IR method is independent of solar illumination. Cloud top pressure, as an 
important indicator of cloud top height, is a good indicator for cloud dynamics. The significance of 
studying cloud top height or cloud top pressure lies not only in its representativeness of dynamic 
characteristics, but also in its close relationship with thermodynamic factors. However, the retrieval 
of cloud top pressure is still one of the difficulties in retrieving cloud properties from satellite remote 
sensing. This is not only related to the spatial and temporal resolution of satellite data, but also to the 
signal-to-noise ratio (SNR) performance of remote sensing instruments for satellite observation and 
detection, cloud amount in the field of view and other atmospheric parameters (such as atmospheric 
temperature and humidity profile, underlying surface temperature). 
 
The remainder of this paper is organized as follows, Section 2 briefly introduces the satellite and 
ancillary data used for training RF model. Section III presents the algorithm in detail, including RFs 
introduction and RF regression models. In Section IV, major results of cloud top parameters based 
on the ML algorithm are presented, which are further validated against CALIOP and MODIS 
followed by characteristics analyzation of cloud top parameters in time and space and Finally, Section 
V provides a short summary.  
 

DATA AND METHODS 
 
The new-generation geostationary meteorological satellite Himawari-8 carrying Advanced Himawari 
Imager (AHI), was successfully launched into geosynchronous orbit by Japan Meteorological 
Agency (Japan Aerospace Exploration Agency JAXA) on October7, 2014, and the observation data 
began to be released on July 7, 2015[16].  AHI has 16 (VIS-4, NIR-2 and IR-10) bands with diverse 
spatial resolutions ranging from 0.5 (visible band) to 2.0 km(IR band) and a full-disk observation 
frequency of 10min [17] At present, Himawari-8 satellite has been applied in the fields of surface 
and sea surface temperature inversion, cloud and haze detection, aerosol data assimilation and forest 
fire detection. In this investigation, we use one year (from January to December of 2018) of 
continuous H8/AHI data for developing the new algorithm and conducting validation and further 
analysis. Table 1 list the Himavari-8/AHI specification [18][19]. 
 
In this investigation, to train the model in RFs algorithm, the global cloud observations with 333m 
resolution from The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations(CALIPSO) 
Version-4.20 dataset are used to create the parameters training dataset and to provide a benchmark 
for validation, Note that, in this paper, the matching algorithm calculates the minimum distance 



between CALIPSO footprint and Himawari-8/AHI pixel to determine the specific matching point 
within a time distance of about±5 min. CALIPSO has flown in formation with the NASA A-train 
constellation of satellites launched at May 2006. Cloud-Aerosol Lidar with Orthogonal Polarization 
(CALIOP) is a two-wavelength polarization lidar (the primary instrument on the satellite) that 
performs global profiling of aerosols and clouds in the troposphere and lower stratosphere [20][21]. 
It is the first Cloud-Aerosol Lidar with two channels at 532 and 1064 nm. Thus, it can detect more 
complete vertical structure of clouds are reliable for determining the cloud-top properties of thin, 
high-level clouds. The global, multiyear dataset obtained from CALIOP provides a new view of the 
earth’s atmosphere and will lead to an improved understanding of the role of aerosols and clouds in 
the climate system. A CALIOP represents a major advance in space-based active remote sensing of 
clouds and aerosols, and the CALIOP algorithms have many unique aspects designed to take 
advantage of these new capabilities. There are three basic types of level 2 data products: layer 
products, profile products, and the vertical feature mask (VFM). Layer products provide layer-
integrated or layer-averaged properties of detected aerosol and cloud layers.  
 
We employed 60 days of continuous quantitative level 2 gridded CALIPSO (version of V4.20) cloud 
top parameters data in the 2018 as the training set. The layer data have a time interval of an hour and 
covers the whole area between the latitudes of 60°S and 60°N within a spatial resolution of 0.03° × 
0.03°. Considering the potential effect of the angle of field-of-view (FOV) of GEO satellite imaging 
sensor on the cloud top properties retrieval, we abandon the samples of H8/AHI at high latitudes 
(large satellite angles) and only focus on the samples bracketed from 70°E to 180°E and −70°S to 
70°N. The first-class products of Himawari-8, observed by IR bands (Bands 9–16) of H08/AHI from 
7.3 to 13.2 μm (Table I) as input features to predict or estimate cloud top parameters. Level 2 gridded 
CALIPSO cloud top properties data collocated by taking the target output. The data are utilized to 
train and develop the ML prediction model. Furthermore, collocated sample data on the 10nd and 
16th days of every month in 2019 are randomly chosen to be an independent validation dataset (these 
become the testing dataset in next paragraph). 
 
Finally, to further validate cloud top properties retrieval algorithms from GEO satellite measurements, 
the accuracy of predicted products is evaluated by comparing with CALIPSO data and we also use 
the previous algorithms for satellite passive imagers employ spatial-temporally matched temperature, 
pressure, and height data of latest Moderate Resolution Imaging Spectroradiometer (MODIS) official 
Collection-6.1 level-2 products for inter-comparison [22]. MODIS have widely been used to illustrate 
the global distributions. Offering various physical products for clouds, aerosols, sea surfaces, 
wildfires, photosynthetically active radiation, and so on. Cloud mask, types, microphysical and 
optical properties, and cloud life cycles, these products are widely used for weather analysis and 
forecasting, short-term climate prediction, and environmental and disaster monitoring in Asia of 
cloud fraction, cloud mask, cloud optical thickness (COT), top height (CTH), and temperature (CTT) 
for both ice and liquid water clouds. 
 
Random forest RFs is a machine learning algorithm developed in recent ten years by Leo Breiman 
and Adele Cutler. which has been widely used for both classification and regression problems without 
much hyperparameter tuning. Its basic unit is decision tree, and its essence belongs to Ensemble 
Learning, a major branch of machine learning. Ensemble learning is to use a series of learners to 
learn, and integrate various learning methods through a specific rule. RFs has its unique advantages 
and characteristics and is a classifier that contains multiple decision trees. By integrating multiple 
decision trees to form the whole forest in a random way, the algorithm results are obtained. There are 
many decision trees in the forest, and there is no correlation between these decision trees. An 
algorithm that integrates multiple trees with the idea of ensemble learning is suitable for dealing with 
the complex relationship between predicted values and non-linear inputs. averaged to improve the 
predicted accuracy and reduce overfitting. It can well capture nonlinear association patterns between 
predictor and predictand variables. Despite the afore mentioned advantages, the RF algorithm is still 
lack of interpretability and mathematical theory by nature, making it almost impossible or uneasily 
to demonstrate how the predictions or decisions are made.  
 



In this investigation, the free, simple, and efficient scikitlearn toolkit [13], a well-known Python 
module for ML, has been used to implement the training, parameter adjustment, and prediction within 
this RF algorithm. A range of typical classification, regression, and clustering algorithms are 
integrated into this Python ML toolkit, including RFs, SVMs, and k-means, among others. The entire 
RF model flowchart is shown in Fig. 1. 

 
Fig. 1 The flowchart of the cloud top parameters estimation algorithm 

 
TABLE Ⅰ 

Coefficient of determination, RMSE and MBE as a function of different independent variables.  

(variable 1: CTT, variable 2: CTH and variable 3: CTP) 

(band number) variable 1 variable 2 variable 3 

Independent Variables  R MBE RMSE R MBE RMSE R MBE RMSE 

All IR BAND 、DEM 0.857 0.428 17.69 0.865 0.18 2.98 0.857 13.67 164.37 

All IR BAND 0.847 0.726 18.49 0.854 0.21 3.0 0.841 17.26 166.18 

8、9、10、11、12、13、14、15、16 0.843 0.982 18.75 0.850 0.17 3.03 0.839 15.27 166.82 

9、10、11、12、13、14、15、16 0.843 1.015 18.73 0.850 0.15 3.03 0.839 13.68 166.42 

10、11、12、13、14、15、16 0.836 0.843 19.10 0.843 0.16 3.09 0.835 14.75 168.61 

11、12、13、14、15、16 0.835 0.845 19.17 0.842 0.17 3.10 0.832 15.98 169.99 

12、13、14、15、16 0.819 0.46 19.95 0.825 0.24 3.25 0.814 19.86 178.33 

13、14、15、16 0.794 0.87 21.17 0.803 0.10 3.42 0.801 12.92 183.16 

14、15、16 0.758 0.94 22.68 0.771 0.09 3.66 0.774 13.45 193.62 

15、16 0.584 0.43 28.32 0.503 0.22 4.98 0.572 19.96 252.36 

16 0.536 0.70 29.38 0.434 0.15 5.17 0.503 15.77 264.63 

 
The effects of various kinds of group of input parameters compared and showed in tableⅠ,the RF 
model involving all the input IR bands and the DEM value provided the best performance. There was 
a 32% increase in the RMSE than when applied single band. The table probably implies that the 
channel data itself mostly contains the determinant information for estimating, which suggests the 
fact that the infrared channel detected by AHI can help the model better estimate cloud properties 
and should be all considered in RF retrieval algorithms. In order to get the optimal RF model, we 
debug the structure and parameters of the model many times, compare the error of the model after 
each debugging, and select the model with the highest stability and the smallest error. 
  



 
TABLE Ⅱ 

Predictor variables in the RF Model and their corresponding rankings  

(variable 1: CTT, variable 2: CTH and variable 3: CTP). 

 Variable 1 Variable 2  Variable 3 

Satellite 

measurement 

Importance 

score for 

variable1 

Ranking Importance 

score for 

variable2 

Ranking Importance 

score for 

variable3 

Ranking 

TBB7 0.0409711 6 0.0332308 7 0.0332308 7 

TBB8 0.0381229 7 0.0345255 6 0.0327108 8 

TBB9 0.1304547 3 0.0819584 4 0.0696068 4 

TBB10 0.0376878 8 0.0317636 8 0.0287540 9 

TBB11 0.0546763 5 0.0485053 5 0.0478789 5 

TBB12 0.1506291 2 0.2507723 2 0.2083979 2 

TBB13 0.0151776 10 0.0127667 11 0.0125791 11 

TBB14 0.0159162 9 0.0140720 10 0.0146956 10 

TBB15 0.3849212 1 0.3041278 1 0.4129626 1 

TBB16 0.1170605 4 0.1595683 3 0.1027405 3 

DEM 0.0143821 11 0.0255693 9 0.0364426 6 

       

Table Ⅱ shows all the predictor variables and their rankings for this optimal RF regression model. As 
one of the key parameters in RF algorithm, here represents the weighting coefficient of every 
predictor in the fitting prediction model. Among others, the TBB observed by Himawari-8/AHI 
band15 get the top rankings, indicating the importance of cloud top parameters from space. It is 
known that this IR wavelength are generally characterized with relatively high atmospheric 
transmission and weak atmospheric absorption. In addition, the TBBs observed by band 12 and band 
16 show relatively high rankings. It is very interesting to see that band 9 representing low atmospheric 
layer information, also get a high importance. Overall, the results illustrate that band 13 and band14 
real-time Himawari-8/AHI observation data are not significant for prediction pixels. 
 

VALIDATION AND RESULTS 
 

In this study, we developed an algorithm for cloud top parameters estimation using a machine 
learning method. The RF algorithm model can quickly and accurately calculate the CTT, CTH and 
CTP by directly connect the satellite in a simple way rather than the complex scheme based on the 
radiance ratioing method. To verify the effectiveness of the algorithm,12 days (each month of day 10 
and 16 in 2019) of independent and spatial-temporally CALIPSO product matched data are used here 
for validating the performances of the RF regression models and utilized to assess the performance 
of the cloud top properties produced from RF method. In addition, the validation of estimated cloud 
top properties against MODIS cloud top product indicates the further confirmation of the accuracy 
of the RF algorithm model. 
 
To quantitatively assess the accuracy of estimated properties derived from AHI high temporal-
resolution observations, we assume that the CALIPSO measurements as the truth data. This high 
spatial-temporal resolution of Himawari 8 level 1 product provide us opportunity to study cloud top 
parameters in depth. Therefore, we select the optimum RF model with high stability by tested 
multiple experiments. In total 205,670 sample points are adopted to evaluate the performance of the 
selected model. It can be seen overall that the instantaneous cloud top parameters agree well with 
Calipso product for all cases. The validation is limited in the following several aspects: 1) The Clay 
measurements are taken in orbit and cannot provide validation over large-area regions. 2) The 
horizontal resolution of the Clay data at three different elevations ranged from 333 m to 1667 m. We 
sampled the Clay data to a horizontal resolution of 333m using only the layer top product, which 
might have introduced bias into the resampled Clay result.  
 
To validate the RF-retrieved results, the scatter plots of Calipso cloud top parameters against AHI 
measurements and Himawari level-2 products corresponds, as well as their concomitant correlation 
coefficients (R) are shown in Fig. 2. Predicted value were compared with collocated CALIPSO 



observations. Collocation is accomplished by matching the CALIPSO latitude and longitude to those 
of 5 km×5 km H8 cloud top products. We can easily see that RF-derived cloud top products showed 
high consistency with Calipso than the Himawari holding the determination coefficient of 0.90, 0.89, 
0.89 for CTT, CTH and CTP respectively. We also found the RF values estimated from AHI are 
slightly smaller than the radar-measured results, the introduction of RF predicted cloud top 
parameters can significantly improve the accuracy of products and comparable to other spaceborne 
lidar and radar measurements. The performance of current study is generally better than that of other 
studies. The evaluation also showed that the RF model has a better performance in reproducing CTP 
and supplements the absence of Himawari CTP product. 

 
Fig.2 Comparison between RF-derived against CALIOP: (1) CTT, (2) CTH and (3) CTP. 

 
The scatter plots of RF-derived cloud top parameters quantitatively compared against CALIOP 
product as well as their sample numbers (N), concomitant correlation coefficients (R) in 2019 are 
shown in Fig.3.CALIOP was regard as true value in this study. the overall coefficients of 
determination are high for most of the RF-derived parameters. As we also can see from the graph, 
each parameter value has two peaks, which is assumed to the reason of different cloud phases. Thus, 
the validation was followed by the cloud top parameters evaluation of the for each cloud phase.  
 

Fig.3 Cloud top parameters evaluation of the RF model retrieval for each area in 2019.  

each row represents: (1) Sea area and (2) Land area. 

 
In the sea area, coefficients of RF-derived CTT yielded the highest value of 0.84 which indicated that 
the cloud top parameters in this research are reliable over the sea land. However, the CTHs estimated 
from RF and are smaller than the CAISPSO results while the CTP overestimated over the land area. 
We also found the CTP values show large inconsistent variations with the CALIPSO. At the Land 
site, the highest R is 0.75 for CTH of RF-derived and the corresponding MBE and RMSE are 0.65 
and 2.44, respectively. Table Ⅵ is another way to gain more insight into the capability of RF 
algorithm products. 
 



Based on the observation data of Himawari-8 satellite level-1 data, combined with artificial 
intelligence machine learning method and CALIPSO cloud top product data, an efficient algorithm 
for estimating CTT, CTH and CTP was developed. On this basis, the characteristics of high spatial 
and temporal scales of cloud top properties in Asia-Pacific region in 2018 are analyzed. Himavari-
8/AHI covers Asia-Pacific region, where the spatial distribution of cloud top properties is 
significantly diverse due to the difference of natural and climatic environments for each region. In 
this case, we analyze the annual scale of cloud top parameters. The results in fig.4 shows the annual 
average distribution of the cloud top parameters over Asia-Pacific region: (1) CTP, (2) CTT and (3) 
CTT. The spatial distribution of cloud top parameters is visually similar with each other and large 
discrepancies exits over many regions for each parameter.  

 

Fig.4 Annual average distribution of the cloud top parameters over Asia-Pacific region 

(1) CTP, (2) CTT and (3) CTT. 
 
The results indicate that the annual average CTP, CTT and CTH are generally between 200-800 hpa, 
220-280 K and 2-14km in each region. Similar trend is seen from the zonal averages of cloud top 
temperature and pressure for different latitudes in research area. Both the algorithms of the two 
properties have similar performance over the Asia-Pacific region. While the cloud top height has an 
opposite appearance to the pressure showing highest value on the horizontal level and generally lower 
than that of other regions on the latitude from -60° to -20° with a peak at around -30°, in spatial 
distribution the largest CTT in north hemisphere occurs at around 280K, the largest south hemisphere 
occurs at 30°, the largest CTP in north hemisphere occurs at 800 hpa. The properties both decreased 
to the minimum value at equator regions. Large bias is found between the results of CTT and CTP in 
and south hemisphere through both two methods. The highest CTT areas are distributed over the 
southeastern part of the disk and the minimum CTT appears on the equator region. The cloud top 
height is generally less than 7km in Asia. and there are some differences in its spatial variation. The 
rainy area with more low cloud cover distributes lower CTP. When winter comes, the high 
precipitation area moves southward, at the same time the sub-high value area of CTP moves to North 
area, which is due to precipitation in North area in winter.  
 

CONCLUSION 
 
Cloud top parameters plays a significant role in the radiation budget and energy exchange in the 
earth-atmosphere system. Satellite remote sensing provides a unique way to estimate the variation on 
a high spatial-temporal scale. The new generation of Himawari-8 satellites has great improvement in 
time and space resolution. This paper developed a high-temporal for AHI cloud top products, and 
constructed a high-precision random forest model for cloud top parameters, which can rapidly 
develop cloud top products based on the combination of real time AHI IR bands observation and 
CALIPSO cloud layer products. A simple, yet efficient and accurate algorithm is presented to 
estimate the cloud top parameters.  
 
We also used CALIPSO to validate the accuracy of RF model algorithm seen CALIPSO as true value. 
As a result, it is worth reemphasizing that, estimated values from Himawari-8 data in 2019 shows 
good consistency with validation samples of CALIPSO cloud top parameters, holding the 
determination coefficient of 0.90, 0.89 and 0.89 respectively. The inter-comparison results were 
different for the case study and the small area region because of the lack of sample quantities and the 
differ sensitivities to the cloud particles. However, the retrieval precision of our algorithm was 



generally within the scope of expected theoretical accuracy. 
 
Finally, based on the accuracy evaluation of the RF-derived results, the characteristics of cloud top 
temperature and pressure in time and space are analyzed, and a typical case is selected to study. The 
application of the algorithm and error analysis are carried out to evaluate the estimation ability of 
cloud top parameters. It should be notable that we only use one-year data to analyze the seasonal 
character, so there may be uncertainty in analyzing the spatial-temporal features of parameters. In 
addition, more analysis in daily or even hourly time scales are needed. This study not only validates 
that the RF model is effective and practical but also proposed an alternative method for estimating 
cloud top parameters with a high accuracy. RF model could be used to retrieval the further cloud 
variables such as the optical cloud thickness and effective radii that are associated with the absence 
of high accuracy products. 
 
REFERENCE 
 
[1]Weisz, E., Li, J., Menzel, W.P., Heidinger, A.K., Kahn, B.H., Liu, C.Y., 2007. Comparison of 
AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals. Geophys. Res. Lett.34, 1–5 
[2] Holz, R.E., Ackerman, S.A., Nagle, F.W., Frey, R., Dutcher, S., Kuehn, R.E., Vaughan, M., Baum, 
B.A., 2008. Global Moderate resolution Imaging Spectroradiometer (MODIS)cloud detection and 
height evaluation using CALIOP. J. Geophys. Res. 113. 
[3]Ma, R., Letu, H., Yang, K., Wang, T.X., Shi, C., Xu, j., Shi, J.C., Shi, C., & Chen, L.F. (2020). 
Estimation of Surface Shortwave Radiation From Himawari-8 Satellite Data Based on a Combination 
of Radiative Transfer and Deep Neural Network. IEEE Transactions on Geoscience and Remote 
Sensing, 1-13 
[4]Menzel, W.P.; Wylie, D.P.; Strabala, K.I. Seasonal and diurnal changes in cirrus clouds as seen in 
four years of observations with the VAS. J. Appl. Meteor. 1992, 31, 370–385.  
[5]Wylie, D.P.; Santek, D.; Starr, D.O.C. Cloud-top heights from GOES-8 and GOES-9 stereoscopic 
imagery. J. Appl. Meteor. 1998, 37, 405–413.  
[6]Wylie, D.P.; Menzel, W.P. Two years of cloud cover statistics using VAS. J. Clim. 1989, 2, 380–
392. 8 
[7] Menzel, W.P.; Frey, R.A.; Zhang, H.; Wylie, D.P.; Moeller, C.C.; Holz, R.E.; Maddux, B.; Baum, 
B.A.; Strabala, K.I.; Gumley, L.E. MODIS global cloud-top pressure and amount estimation: 
Algorithm description and results. J. Appl. Meteorol. Cliim. 2008, 47, 1175–1198. 
[8] Li, J., Li, Z., Wang, P., Schmit, T.J., Bai, W., Atlas, R., 2017. An efficient radiative transfer model 
for hyperspectral IR radiance simulation and applications under cloudy sky conditions. J. Geophys. 
Res. 122, 7600–7613.  
[9] Li, J., Yi, Y.H., Stamnes, K., Ding, X.D., Wang, T.H., Jin, H.C., Wang, S.S., 2013. A new 
approach to retrieve cloud base height of marine boundary layer clouds. Geophys.Res. Lett. 40, 4448–
4453. 
[10] Hamann, U.; Walther, A.; Baum, B.; Bennartz, R.; Bugliaro, L.; Derrien, M.; Francis, P.N.; 
Heidinger, A.; Joro, S.; Kniffka, A.; et al. Remote sensing of cloud top pressure/height from SEVIRI: 
Analysis of ten current retrieval algorithms. Atmos. Meas. Tech. 2014, 7, 2839–2867. 4 
[11] Kühnlein, M., Appelhans, T., Thies, B., Nauß, T., 2014a. Precipitation estimates from 
MSGSEVIRI daytime, nighttime, and twilight data with random forests. J. Appl. Meteorol. Climatol. 
53, 2457–2480. 
[12] Kühnlein, M., Appelhans, T., Thies, B., Nauss, T., 2014b. Improving the accuracy of rainfall 
rates from optical satellite sensors with machine learning—a random forestsbased approach applied 
to MSG SEVIRI. Remote Sens. Environ. 141, 129–143. 
[13] Min, M., Bai, C., Guo, J., Sun, F., Liu, C., Wang, F., Xu, H., Tang, S., Li, B., Di, D., Dong, L., 
Li, J., 2019. Estimating summertime precipitation from Himawari-8 and global forecast system based 
on machine learning. IEEE Trans. Geosci. Remote Sens. 57,2557–2570. 
[14] Håkansson, N., Adok, C., Thoss, A., Scheirer, R., Hiörnquist, S., 2018. Neural network cloud 
top pressure and height for MODIS. Atmos. Meas. Tech. 11, 3177–3196.  
[15] Breiman, L., 2001. Random forests. In: Machine Learning. 45. pp. 5–32. 
[16] Letu H, Nagao TM, Nakajima TY, Riedi J, Ishimoto H, Baran AJ, et al. Ice Cloud Properties 
from Himawari-8/AHI Next-Generation Geostationary Satellite: Capability of the AHI to Monitor 
the DC Cloud Generation Process. IEEE Transactions on Geoscience and Remote Sensing. 2019; 



57:3229-39. 
[17] Husi, L., Nagao, T.M., Nakajima, T.Y., Riedi, J., Ishimoto, H., Baran, A.J., Shang, H., Sekiguchi, 
M., Kikuchi, M., 2019. Ice cloud properties from Himawari-8/AHI next generation geostationary 
satellite: capability of the AHI to monitor the DC cloud generation process. IEEE Trans. Geosci. 
Remote Sens. 57, 3229–3239.  
[18] Min, M., Wu, C., Li, C., Liu, H., Xu, N., Wu, X., Chen, L., Wang, F., Sun, F., Qin, D., Wang, 
X., Li, B., Zheng, Z., Cao, G., Dong, L., 2017. Developing the science product algorithm testbed for 
Chinese next-generation geostationary meteorological satellites: Fengyun-4 series. J. Meteorol. Res. 
31, 708–719. 
[19] Sun, F., Min, M., Qin, D., Wang, F., Hu, J., 2019. Refined typhoon geometric center derived 
from a high spatiotemporal resolution geostationary satellite imaging system. IEEE Geosci. Remote 
Sens. Lett. 16, 499–503. 
[20]Min, M., Zhang, Z., 2014. On the influence of cloud fraction diurnal cycle and sub-grid cloud 
optical thickness variability on all-sky direct aerosol radiative forcing. J. Quant. Spectrosc. Radiat. 
Transf. 142, 25–36. 
[21] Winker, D.M., Vaughan, M.A., Omar, A., Hu, Y., Powell, K.A., Liu, Z., Hunt, W.H., Young, 
S.A., 2009. Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. 
Ocean. Technol. 26, 2310–2323.  
[22] Baum, B., Menzel, W.P., Frey, R., Tobin, D., Holz, R., Ackerman, S., 2012a. MODIS cloud top 
property refinements for Collection 6. J. Appl. Meteorol. Climatol. 51,1145–1163. 
 


