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ABSTRACT: Quickly and accurately monitoring heavy metal pollution have important practical 

significance. Heavy metal pollution in crops leads to phenological changes, which can be 

monitored by remote sensing technology. This study focused on investigating rice phenological 

differences under different heavy metal stress levels using an integrated NDVI (Normalized 

Difference Vegetation Index) time-series from multi-source remote sensing images. The S-G 

filtering method was applied to reconstruct time-series data, and phenological metrics were 

extracted from the reconstructed time-series data of NDVI to investigate the rice phenological 

differences under mild, moderate and severe stress levels. Results indicated phenological metrics 

existed differences under different heavy metal stress levels, and metric values under severe stress 

for presenting rice phenological differences were smaller than the ones under mild stress and 

moderate stress. This finding demonstrated the superiority of remote sensing phenological 

information applied to rice heavy metal stress monitoring, which can be a new way to distinguish 

heavy metal stress in rice. 

 

INTRODUCTION 

 

The research on physiological and ecological effects of heavy metal pollution in rice have shown 

that heavy metal poisoning can lead to thin plant growth, short leaves, serious yellowing and 

phenological delay(Wagner, 1993; Wang, 2007; Z, 1992; Zhao, 2011), and phenology is often 

used as an important indicator of crop yield estimation and field management, the phenological 

length and the growth rate is of great significance to crop growth simulation(Zhao, 2011; Brown, 

2008; Dubovyk, 2016; Menzel, 2000), while the phenological information extracted by remote 

sensing technology can not only reflect the continuous growth and stress state of rice during the 

whole growth stage, but also avoid uncertainty of selecting the most sensitive spectral parameters 

to physiological elements in previous study. Furthermore, the researchers can infer the 

environmental conditions through the phenological changes of crops, especially the soil(Reed, 

1994), which is helpful to study the mechanism of rice poisoned by heavy metals by exploring the 

relationship between rice phenology and stress. VIs time-series with obvious seasonal rhythm are 

commonly used for the study of phenology in previous research, and NDVI whose seasonal 

rhythm comprehensively reflect seasonal variation characteristics of rice can reveal the dynamic 

state of rice accurately according to the spectral reflectivity characteristic of visible vegetation 

and near infrared band(Carlson, 1997). 

 



STUDY AREA AND DATA 

 

The study area, ranging between 26°03′–28°01′ N and 112°57′–114°07′ E, is located in the 

Zhuzhou area, downstream from Xiangjiang in Hunan Province. The long-term discharge of large 

quantities of industrial wastewater, gases, and residues has contaminated water, soil, and crops in 

the Xiangjiang watershed with different levels of heavy metals. Many rice fields adjacent to the 

Xiangjiang watershed in Zhuzhou have become seriously polluted. In the study area, we selected 

three 1.28 km × 1.28 km rice fields labeled as A, B, and C. They have similar climatic condition 

and vary in heavy metal stress level. The main type of rice in that area is Boyou 9083. The soil 

environmental quality standard is used to evaluate the pollution levels (Liu, 2009). The pollution 

levels for areas A, B and C are categorized as “mild level”, “moderate level”, and “severe level”, 

respectively. In addition, intensive cultivation patterns were used in all experimental areas to 

ensure adequate irrigation and sufficient fertilizers in paddy fields without pests, weeds, or other 

environmental issues. 

The remote sensing data collected from June to September in 2013, covering the entire rice 

growing season in Zhuzhou. Three types of remote sensing images were used for remote sensing 

phenology, including CCD images of HJ-1A/B, Operational Land Imager (OLI) images of 

Landsat-8, and Enhanced Thematic Mapper Plus (ETM+) images of Landsat-7. According to the 

absolute radiation calibration coefficient of HJ-1A/B, released by the China Resources Satellite 

Application Center in 2013, radiometric calibration and layer stacking were applied to the CCD 

images. Radiometric calibration and atmospheric correction were also needed for both ETM+ and 

OLI images. The Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) 

model was used for atmospheric correction in the three types of remote sensing images, and 

geometric correction was based on CCD images. The corrected root-mean-square error (RMSE) 

was less than 0.5 pixels. In addition, due to the failure of the Landsat-7 airborne scan line corrector 

(SLC) in May 2003, gapfill processing was required for the ETM+ images. 

 

METHOD 

 

Creation of Integrated NDVI Time Series 

 

The ordinary least-squares (OLS) model is a primary tool for comparing two datasets and 

predicting one dataset from another, which by finding an optimal matching function, so that the 

square sum of the error between the predicted value and the actual value is minimized(Anderson, 

2011; Peng, 2013). This study used OLS to build an intercalibration equation of VIs derived from 

OLI, ETM+ and CCD sensors. We used the OLS method to integrate the three remote sensing 

datasets and established the ordinary least square fitting equation with NDVI extracted from 

image pairs of CCD, ETM+ and OLI respectively on the same day, so as to predict the NDVI 

value of CCD data in other time. 

In order to verify the consistency of integrated results, statistical analysis indicators such as 

agreement coefficient (AC) and mean square difference (MSD) that evaluate the consistency of 

the two datasets were introduced which can effectively distinguish the systemic and non-

systematic differences of two datasets, that is, the closer AC value is to 1, the better consistency 

is; and MSD can be further decomposed into unsystematic mean product-difference (MPDu) and 

systematic mean product-difference (MPDs). MPDu which are also used to evaluate the difference 



of three kinds of images, that is, the lower these three indexes are, the less difference is. 

AC = 1 – 
∑ (Xi−Yi)2n
i=1

∑ (|X−Y|+|Xi−X|)(|X−Y|+|Yi−Y|)n
i=1

                    (1)              

MSD = 
1

n
∑ (Xi − Yi)2n
i=1                                 (2) 

MPDu = 
1

n
∑ (|Xi − Zi|)(|Yi − Ci|)n
i=1         (3)                 

             MPDs = MSD – MPDu                                   (4) 

Where X and Y are NDVI mean values of two kinds of images respectively, Xi and Yi are the 

NDVI values of each pixel, Zi and Ci are regression analysis values, and n is the number of pixels. 

Due to the presence of cloud and shadow, the time-series NDVI data still had a lot of noise, so 

they need to be filtered and reconstructed before application (Hird, 2009; Julien, 2010; Lipovetsky, 

2010; Madden, 1978). S-G filter is a weighted average algorithm based on sliding window, which 

calculates smooth value of fixed number of points near a certain point by the n order fitted 

polynomial, and it’s very important to set the polynomial degree and window size, we obtained 

the appropriate values through constantly try again(Pan, 2015). S-G filter was applied in this study. 

 

Calculation of Rice Phenological Characteristics under Different Heavy Metal Stress Levels 

 

We extracted critical phenological parameters based on the NDVI time series curve, including 

Start of Season, End of Season, Length of Season, Base Level, Largest Value and Seasonal 

Amplitude and Seasonal Integral. Length of season means time from start to end of the season. 

Base level is given as the average of the left and the right minimum values. Seasonal amplitude 

describes difference between the maximum value and the base level. Rate of increase or decrease 

is calculated as the ratio of the difference between the left or right 20% and 80% levels. Seasonal 

integral means the integral of function describing the season from season start to season end. Reed 

et al. (Reed, 1994) verified that these metrics may not necessarily correspond directly to 

conventional, ground-based phenological events, but show strong coincidence with expected 

phenological characteristics. We chose the length of season, base level, seasonal amplitude, 

growth rate and seasonal integral as the phenological indicators for further research. 

 

RESULTS 

 

Agreement Evaluation of NDVI Time-Series 

 

A number of rice sample plots were selected from each of the three study areas, some were used 

to establish the ordinary least squares fitting model, and the other part was used to evaluate the 

accuracy of the intercalibration results, the function relationships based on NDVI obtained from 

ETM+, OLI and CCD were established respectively, as shown in Figure 1, it can be seen that 

NDVI calculated by ETM+ and OLI all have a high correlation with NDVI calculated by CCD, 

the correlation coefficients acquired in area A with mild pollution are 0.8303 and 0.8484, 

respectively; the correlation coefficients acquired in area B with moderate pollution are 0.808 and 

0.8802, respectively; the correlation coefficients acquired in area C with severe pollution are 0.844 

and 0.8582, respectively; and among the three study areas, NDVI calculated by Landsat-8 OLI 



had a higher correlation with the NDVI calculated by CCD, which may indicate that compared 

with ETM+, the sensor parameters of OLI is closer to that of CCD. 

 

 

 

Figure 1. The regression relationship of NDVI calculated by ETM+, OLI and CCD images 

 

 

Figure 2. Agreement evaluation of integration results: (a) exhibits the values of agreement 

coefficient (AC); (b) exhibits the ratio of unsystematic mean product-difference (MPDu) to 

systematic mean product-difference (MSD); (c) exhibits the values of systematic mean product-

difference (MSD), unsystematic mean product-difference (MPDu) and systematic mean 

product-difference (MPDs) based on CCD and ETM+; and (d) exhibits the values based on 

CCD and OLI. 

The differences between NDVI values acquired from CCD and those obtained from ETM+ and 



OLI were compared by calculating the statistical analysis indicators such as AC, MSD, MPDu, 

MPDs, and MPDu/MSD, as shown in Figure 2. All AC values are close to one, and the AC values 

based on OLI and CCD are greater than those based on ETM+ and CCD. CCD and OLI may have 

more consistency compared with ETM+. MSD, MPDu, MPDs, and MPDu/MSD values are all 

small, meaning the error among the three types of images is relatively small, verifying that 

integrated NDVI time series derived from CCD, ETM+, and OLI images achieved good results 

in this study. Additionally, the MPDs values are much higher than the MPDu values for the NDVI 

of the three datasets, indicating that systematic differences were the primary difference among the 

three datasets. 

 
Figure 3. The fitting curve of S-G filter 

It can be seen from Figure 3 that Savitzy-Golay filter is closely related to the original data. 

Statistical analysis indicators such as mean, standard deviation, root mean square error (RMSE) 

and correlation coefficient (r) were used to further quantitatively evaluate the accuracy of Savitzy-

Golay filter, and the values are 0.59, 0.12, 0.06 and 0.88 respectively. 

 

Difference Analysis of Phenological Indicators under Heavy Metal Stress 

 

Five indicators, including seasonal amplitude, base level, growth ratio, length of season, and 

seasonal integral were calculated in the three experimental areas, as shown in Figure 4. According 

to statistical analysis, the amplitude range of areas A, B, and C were 0.34–0.59, 0.28–0.48, and 

0–0.46, respectively. Area A still had pixel distribution in the range of 0.48–0.59. For area B, 93 

pixels were in 0.36–0.46, accounting for 44.5% of the total number of pixels, whereas area C had 

58 pixels in this range, accounting for 25.4% of the total number of pixels. Compared with area 

C, area B had more pixels in this range, displaying the different influences of heavy metal stress 

on the seasonal amplitude. The base level of areas A, B, and C were distributed within 0.36–0.59, 

0.26–0.44, and 0.19–0.41 respectively. Figure 4c shows the discrepancy in the pixel number in 

each interval among the three experimental regions. The pixels for area A were mainly distributed 

in the range of 0.44–0.59, whereas no pixels were distribution in this range for areas B and C. The 

number of pixels in the range of 0.36–0.39 for areas B and C were 46 and 36, accounting for 

22.3% and 15.8% of the total number of pixels, respectively. The number of pixels in the range 

of 0.39–0.41 for areas B and C were 31 and 13, accounting for 14.8% and 6% of the total number 

of pixels, respectively. 



 

Figure 4. The spatial distribution of five phenological indicators including (a) seasonal 

amplitude, (b) growth ratio, (c) base level, (d) length of season and (e) seasonal integral for 

analyzing heavy metal stress levels in rice. 

The growth rate of areas A, B, and C were in the range of 0 to 0.11. Figure 4b shows the different 

heavy metal stress levels according to growth ratio in space. The distribution of rice pixels for 

area A, ranging from 0.05 to 0.11, was relatively concentrated, whereas the growth rate for areas 



B and C were mainly concentrated in 0.026–0.078, with 47.4% and 17% of pixels found in 0.05–

0.078 in areas B and C, respectively. The proportion of pixels in area B was much greater than 

that in area C. The trend in growth rate was consistent with the conclusions obtained in prior 

studies that heavy metal stress reduced the growth rate of rice, which led to the unfolding of the 

leaves and the inhibition of radicle growth (Zhao, 2011). The distinction in growth rate was 

superior to seasonal amplitude. In comparison with the above phenological indicators, the 

differentiation in length of season was not obvious, as presented in Figure 4d. Length of season 

had a higher coincidence degree in each division interval, and directly distinguishing the three 

pollution areas was difficult. In Figure 4e, the number of relatively high values in areas A and B 

was greater than in area C, which may indicate that area C was most seriously affected by heavy 

metal stress. However, the distribution of rice pixels in areas A and B were concentrated in the 

range of 11.4 to 15, and the distinction between A and B was not obvious. In summary, the base 

level was relatively sensitive to the monitoring of heavy metal stress in the study area, whereas 

the length of season and the seasonal integral were not sensitive. 

 

DISCUSSION AND CONCLUSIONS 

 

The load parameters of CCD, ETM +, and OLI are generally consistent, having high correlation, 

and the consistency between the images is close to 0.9, which means we could obtain closer NDVI 

time series to detect phenological information. The feasibility of multi-source remote sensing data 

for phenological research was verified. The performance of noise reduction and time-series 

construction techniques were judged by the ability to reflect the essential shape of the time-series, 

so that phenological parameters could be accurately extracted (Hird, 2009). Eklundh and Jonsson 

suggested that the S-G filter is preferable when time series data is used to derive seasonality 

parameters (Eklundha, 2012). We found that the S-G filter had the great effect on the research 

area based on characteristic analysis and quantitative statistical analysis. The correlation between 

the filtered data and the original data was close to 0.9, showing the growth of rice could be truly 

reflected, which is also consistent with previous conclusions. 

We selected length of season, base level, seasonal amplitude, growth ratio, and seasonal integral 

as phenological indicators. The results showed that these phenological indicators can reflect the 

heavy metal stress difference to some extent. The results showed that the heavier the heavy metal 

stress is, the smaller the phenological indicator values would be, which can be used as an 

important feature to distinguish stress levels. The results can be explained from two aspects: firstly, 

when the rice is under heavy metal stress, the activity of the enzyme required for chlorophyll 

formation is inhibited, and chlorophyll content decreased, resulting in chlorosis symptoms in rice 

(Wagner, 1993; Wang, 2007; Z, 1992; Zhao, 2011), which performed in the NDVI time-series is 

the reduction of maximum and minimum NDVI values, that may reduce seasonal amplitude, base 

level, seasonal integral. Secondly, heavy metal stress leads to changes in rice morphology, such 

as curly leaves and fallen leaves. The rice cannot get enough photosynthetic products due to the 

reduced LAI. Meanwhile, the transport of photosynthetic products to the organs is hindered, 

affecting the capacity of organs to transform photosynthetic products into dry matter (Das, 1997), 

therefore, the growth rate and the length of season may be reduced. 
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