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ABSTRACT  

Spatially distributed soil information is essential for informed decision-making aimed at 

environmental management and as well as addressing many research issues. To obtain 

continuous soil data from limited point measurements, digital soil mapping (DSM) techniques 

using various remote sensing data products are now recognized as effective tools for a wide 

range of spatial scales and diverse landscapes. The study was conducted in an Indian Himalayan 

watershed located near Chamba in Tehri Garhwal district of Uttarakhand, for mapping soil 

organic carbon and textural fractions (sand, silt, and clay) employing support vector regression, 

a popular machine learning technique. The watershed covers an area of 43 square kilometres and 

the elevation varies between 667 and 2459 metres above the mean sea level. Soil database 

comprising laboratory analysis results of 212 surface (0-15 cm) soil samples corresponding to 

georeferenced sampling locations within the area was used for mapping the spatial distribution 

using high-resolution remote sensing satellite data (Sentinel-2) and terrain data (CartoDEM). 

Different spectral indices reflecting the variations in vegetation and parent material were 

generated from archived long-term Sentinel-2 datasets using Google Earth Engine cloud 

computing platform and terrain indices were generated using high-resolution CartoDEM. These 

different environmental variables were used for fitting prediction models using support vector 

regression (SVR) in the R computing platform. A recursive feature elimination approach with 

10 fold cross-validation was used for the selection of significant environmental variables 

concerning different targeted soil properties. The performance of the models was statistically 

analyzed and optimal accuracy was obtained by calculating the R-squared, Mean Absolute Error 

(MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE) values. The models 

could predict sand and silt textural fractions with R-squared values of 0.61 and 0.50 

respectively. Whereas clay distribution could be predicted with a higher R-squared value of 

0.71, and the MAE and RMSE values of 0.52 and 3.12 respectively, while the soil organic 

carbon predictions had the least R-squared value of 0.04. The validated models were further 

used for mapping different soil properties in the watershed. These approaches making use of the 

increasingly available free remote sensing and terrain data employing machine learning 

techniques will aid in improving soil information at different scales especially in mountainous 

terrains with limited resources and much-reduced costs. Ultimately, such rapid and reliable soil 

information systems with known uncertainties will help us in adopting various land management 

decisions for improving agricultural productivity, enhanced resource utilization as well as 

environmental sustainability. 
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INTRODUCTION 

 

Spatially distributed soil information is essential for informed decision-making aimed at 

environmental management and as well as addressing many research issues. To address the 

affair of the resources ranging from local to global scales, environmental scientists and 

policymakers are seeking soil information that is more specific and detailed with explicit spatial 

data. These users’ needs demand recent and improved spatial soil information, particularly in a 

digital format that is readily incorporated into geographic information systems (GIS) and can be 

analyzed with other spatial data (Lagacherie and McBratney, 2007). The approach of the 

information acquirement, modeling, and mapping of the soil is significant to their response, but 

conventional soil mapping cannot efficiently provide the amount of data that is required at an 

optimal cost. The vital reason is well known; when spatial soil information is needed, 

conventional soil sampling for a wide area and laboratory analyses of the huge soil samples is 

time-consuming and expensive (Viscarra Rossel and McBratney, 1998). Conventional mapping 

can produce accurate maps but is labor-intensive and often impractical in large, inaccessible 

areas (Bui and Moran, 2003). To obtain continuous soil data from limited point measurements, 

digital soil mapping (DSM) techniques using various remote sensing data products are now 

recognized as effective tools for a wide range of spatial scales and diverse landscapes. 

 

Digital soil mapping (DSM), also known in the literature as predictive soil mapping has evolved 

from traditional soil survey with advances in computing and geographic data handling, as well 

as increased availability of environmental covariate data from digital elevation models, and 

remotely sensed imageries. It is the computer-assisted production of digital soil maps of soil 

classes or soil properties based on quantitative relationships between spatially explicit 

environmental data or covariates and measurements made in the field and laboratory 

(McBratney et al., 2003; Scull et al., 2003; Lagacherie and McBratney, 2007). The benefit of 

digital soil mapping is in its quantitative character of soil; external factors dependence that 

makes soil cartography more scientifically based. Soil is a continuum, where the soil properties 

at a given location depend on their geographic position and also on the soil properties at 

neighboring locations. This approach was followed and summarized by McBratney et al. (2003), 

who identified 7 factors (scorpan) for soil spatial prediction. The proposed scorpan model, 

where soil (as either soil classes, Sc or soil attributes, Sa) at a point in space and time is an 

empirical quantitative function of seven environmental covariates. The scorpan in its expanded 

form is soil, climate, organisms (vegetation or fauna or human activity), relief, parent material, 

age, and spatial position respectively, which are the soil-forming factors characterizing 

environmental covariates (Minasny et al. 2013). It is similar to the clorpt (Jenny, 1941) model 

but intended for quantitative descriptions of relationships between soil and other spatially 

referenced factors and is used as soil spatial prediction functions rather than explanation 

(McBratney et al., 2003). The scorpan equation also explicitly incorporates space (x, y 

coordinates) and time (~t), which indicates that scorpan is a geographic model, where the soil 

and factors are spatial layers that can be represented in a geographic information system.  

 

The development of machine learning as a branch of artificial intelligence (AI) is very fast. Its 

usage has spread to various fields. Machine learning (ML) is currently applied to mapping soil 

properties or classes much in the same way as other unrelated fields of science. Mapping of soil, 

however, has unique aspects that require adaptations of the ML algorithms. Machine learning in 

soil science covers a set of data-mining techniques that can recognize patterns in datasets and 

learn from these to predict quantitative soil variables. Many algorithms are available and robust 

prediction results are possible (Hastie et al., 2009; Li and Heap, 2008; Li et al., 2011). Digital 

soil mapping aims to predict the target soil variable at unobserved locations from observations at 

neighboring locations, preferably with the help of layers of environmental covariates.  



The support vector machine (SVM) with its ability to learn complex data-classes, handle large, 

and low-dimension datasets has been applied to soil mapping (Li and Zhao, 2009; Brungard et 

al., 2015; Brevik et al., 2016; Heung et al., 2016; Forkuor et al., 2017).In undulating and highly 

elevated terrain of the Central Himalayas, soil properties are locally variable (Bahuguna and 

Chaturvedi, 2018) encouraging the regression approach of digital soil mapping. Support vector 

regression (SVR) algorithm is one of the most promising performances in regression-based 

digital soil mapping (Ballabio, 2009), which was used to spatially predict and map the soil 

properties of the unsampled area in this study. 

 

 

MATERIALS AND METHODS 

 

Study area 

 

The study was conducted in an Indian Himalayan watershed located near Chamba in Tehri 

Garhwal district of Uttarakhand. The study area covers 4270 ha (43 sq. km) and lies between 

78˚27’01’’ E - 78˚21’53’’E longitudes and 30˚20’15’’ N - 30˚25’22’’ N latitudes. The region is 

highly undulating and exhibits the typical mountainous topography of North-Western Himalayas 

with an elevation of 667 to 2459 meters above mean sea level. Agriculture land is the dominant 

land-use system in the watershed followed by forest and scrubland. The watershed considered 

for the study is characterized by deep gorges, slopes, narrow valleys, and rocky escarpments. 

The entire watershed consists of high hills and ridges which are deeply incised by the streams. 

 

 
Figure 1: Geographic location of the study area (c CartoDEM Image Copyright 2018 

NRSC/ISRO) 



Soil database and environmental covariates 

 

Soil database comprising laboratory analysis results of 212 surface (0-15 cm) soil samples 

corresponding to georeferenced sampling locations within the area was used for mapping the 

spatial distribution of the soil properties, soil organic carbon, and textural fractions (sand, silt, 

and clay).  

 

An extensive set of environmental covariates considering selective factors of soil spatial 

prediction from the scorpan model, primarily remote sensing data are used for predicting soil 

properties in the digital soil maps. A total of 27 environmental covariates were generated from 

the 10 metre high-resolution remote sensing satellite data (Sentinel-2) and terrain data 

(CartoDEM), which were analyzed to understand their relationship with the soil properties. The 

various spectral indices of Sentinel-2 data were acquired from Google Earth Engine (GEE), an 

open cloud computing platform. Whereas the terrain parameters were derived from the 10 metre 

resolution CartoDEM in ArcGIS. The vegetation indices generated include Green normalized 

difference vegetation index (GNDVI), Green soil adjusted vegetation index (GSAVI), Modified 

soil adjusted vegetation index 2 (MSAVI 2), Normalized difference vegetation index (NDVI), 

Optimized soil adjusted vegetation index (OSAVI), Ratio vegetation index (RVI), Renormalized 

difference vegetation index (RDVI), Soil adjusted vegetation index (SAVI), and Transformed 

difference vegetation index (TDVI), and Transformed vegetation index (TVI). And the parent 

material indices generated were Calcareous mineral, clay mineral, ferrous iron, ferrous mineral, 

ferrous silicate, gypsic mineral,  iron oxide, and other spectral indices namely brightness, 

coloration, and saturation. The terrain parameters and indices generated were aspect, curvature, 

hillshade, slope, solar radiation, stream power index (SPI), and terrain wetness index (TWI). 

 

Model calibration and validation 

 

The support vector machine (SVM) algorithm was developed and introduced by Vapnik (1995) 

as a classifier. The algorithm is used to classify linearly separable classes of objects by finding 

the hyperplanes that best separate the two classes. It maximizes the margin between the two 

classes which increases the separability. Those points of the two classes that are closest to each 

other are called support vectors. Support vector regression has been modified from the SVM and 

featured with the capability of capturing nonlinear relationships in the feature space and is 

considered an effective approach to regression analysis. In the case of classification, SVM aims 

to construct an optimal hyperplane that separates classes creating the widest margin between the 

data whereas in the case of regression it fits the data and predicts it with minimal empirical risk 

and complexity of the modeling function. 

 

The SVR models of the soil properties were built in the integrated development environment, 

RStudio of R using the e1071 package. The SVR models of the soil properties were calibrated 

with the training dataset (70 percent of the dataset) and validated (evaluation of predictive 

performance) with the remaining 30 percent of the dataset. While the feature selection was 

performed by using the Recursive Feature Elimination (RFE) algorithm, implemented on the 

Caret Package (Kuhn, 2017). RFE is an algorithm that performs a backward selection, which 

avoids refitting many models at each step of the search (Kuhn and Johnson, 2013). The input 

data had to be transformed into a higher dimension space using a non-linear function as most 

data cannot be separated linearly in reality. Kernels, which are mathematical functions were 

used to transform the data into a higher dimension space in which the data could be more easily 

separated (Gunn, 1998; Ivanciuc, 2007; Williams, 2011). Perhaps the major task of SVR is to 

choose one among the many available kernels and accordingly fine-tune several other 

hyperparameters. These hyperparameters were empirically tuned to achieve good performance 



of prediction called hyperparameter optimization or model selection. The standard kernels of 

SVM like linear, polynomial, radial, and sigmoid were used to calibrate the models and were 

comparatively analyzed. 

 

RESULTS AND DISCUSSION 

 

The effective SVR models of the soil properties with optimal regression accuracy and 

generalization performance were obtained by considering the significant variables and fine-

tuning the models using the tune function of the e1071 package of R. With feature selection 

being an indispensable step in machine learning, significant variables or features were selected 

by the recursive feature elimination (RFE) on 10-fold cross-validation. The acquired optimum 

number of variables based on RFE are seven, four, four, and twenty seven in the sand, silt, clay, 

and soil organic carbon respectively (Figure). The selected variables were then used to build the 

SVR models of the respective target or dependent. The fact that all the twenty seven variables 

were selected for soil organic carbon was considered and cross-validation of the model with the 

top 5 variables was performed. The models built with the twenty-seven variables and the top 

five variables for the target or dependent variable SOC showed similar errors and also the 

relationship between the observed and predicted soil properties illustrated similar R-squared 

values. So, the top five variables were considered for building the regression model of soil 

organic carbon. 

 

 
(a) Sand 

 
(b) Silt 

 

 
(c) Clay 

 
(d) Soil organic carbon 

Figure 2: Selection of an optimum number of variables based on the least RMSE for 10-fold 

cross-validation for the SVR model of (a) sand, (b) silt, (c) clay, and (d) soil organic carbon 

 



Table 1: The various features selected for training the SVR model 

Soil property Variables selected 

Sand Calcareous, clay mineral, coloration, ferrous iron, ferrous mineral, 

ferrous silicate, gypsic mineral 

Silt Calcareous, coloration, ferrous iron, ferrous mineral 

Clay Calcareous, ferrous mineral, iron oxide, RDVI, saturation 

SOC Calcareous, ferrous mineral, iron oxide, RDVI, saturation 

 

While the tune function selects the best model by iteratively running and selecting the most 

significant hyper-parameters. The hyper-parameters considered in SVR are the kernel, cost, 

epsilon, and gamma. The four basic kernels (linear, polynomial, radial, and sigmoid) were 

comparatively analyzed for all the soil properties. The best SVR models of all the soil properties 

and their respective hyper-parameters selected are given in Table 2. The soil properties sand, 

clay, and SOC obtained the highest R-squared with linear kernels. While on the contrary, silt 

illustrated the highest R-squared value between the observed and predicted values with a radial 

kernel. 

 

Table 2: Soil properties and their corresponding hyper-parameters selected in the SVR model 

Soil properties Kernel Cost Epsilon Gamma 

Sand Linear 8 1 0.14 

Silt Radial 4 0.6 0.25 

Clay Linear 4 0.1 0.25 

SOC Linear 4 0.8 0.2 

 

The R squared value of the validation dataset from the support vector regression model is 

calculated for each soil property. In the regression model, R-squared (R2) represents the 

correlation coefficient between the independent variables and the target or dependent variable. 

The mean absolute error (MAE), and the root mean squared error (RMSE) were considered in 

assessing the accuracy performance of the regression predictive model. They were calculated 

using the Metrics package of R. 

 

Table 3: Cross-validation of the predictive soil properties model with different kernels 

Soil properties Kernels R-squared MAE RMSE 

Sand Linear 0.61 0.95 11.20 

Polynomial 0.38 4.02 11.46 

Radial 0.51 1.53 12.86 

Sigmoid 0.007 4.39 154.68 

Silt Linear 0.46 1.90 9.51 

Polynomial 0.35 1.08 10.51 

Radial 0.50 1.01 8.72 

Sigmoid 0.03 124.04 232.02 

Clay Linear 0.71 0.52 3.12 

Polynomial 0.54 0.48 3.25 

Radial 0.65 0.27 3.28 

Sigmoid 0.12 10.34 51.36 

SOC Linear 0.04 0.16 0.56 

Polynomial 0.001 1.80 2.94 

Radial 0.001 0.82 1.06 

Sigmoid 0.001 11.62 22.01 

 



 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3: The relationship between observed and predicted values of the soil properties 

illustrated by the R-squared values in (sand), (b) silt, (clay), and (d) SOC 

 

It is seen that the highest R-squared value between the predicted and observed values was obtained 

in clay with 0.71, while the least in soil organic carbon with 0.04. This may be due to the high 

dependency of soil organic carbon on the relief factor, low stabilization at a higher altitude, and 

higher density at lower altitudes with higher stabilization (Sheikh et al., 2009). Whereas the spatial 

variability of soil texture, which is the physical property of soil has a close association to parent 

materials that are not highly varied as the relief. The box plot in Figure 4 clearly depicts that SOC 

in the collected soil samples had outliers which may be due to the contributing factor of relief as 

described, while the soil textures do not have such outliers. 

 

 
Figure 4: Box plot of soil properties 
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Figure 5: Spatially predicted maps of the soil properties by the SVR model 

CONCLUSION 

The relatively consistent primary objective of digital soil mapping is to spatially map the soil 

distribution and to delineate uniform management areas which are useful for decision-makers 

and resource conservation point of view. This study demonstrates an approach for spatially 

mapping the soil properties in the Himalayan watershed with laboratory analyzed soil data and 

remotely sensed data by employing a machine learning algorithm.  

 

Even the mountainous or hilly terrains have different ecosystems in different parts of the region 

with a huge variation in the soil-forming factors, which limit one to adopt models used by other 

researchers in a similar environment. The varying soil-landscape relationships across different 

topographies make it even more difficult to decide the best model or approach for spatially 



predicting and mapping soil properties. High soil variation may exist in a small area with 

varying terrain and different soil-forming factors so mapping for bigger areas is generalized in 

most cases. These challenges need to be settled with sophisticated technologies and constant 

refinement of the modeling approach has to be addressed considering the variability of the 

landscapes. 

 

These approaches making use of the increasingly available free remote sensing and terrain data 

employing machine learning techniques will aid in improving soil information at different scales 

especially in mountainous terrains with limited resources and much-reduced costs. Ultimately, 

such rapid and reliable soil information systems with known uncertainties will help us in 

adopting various land management decisions for improving agricultural productivity, enhanced 

resource utilization as well as environmental sustainability. 
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