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Abstract: Land cover assessment and monitoring of its dynamics are essential requirements for 
sustainable management of natural resources and for environmental protection. Remotely sensed 
images are the main source of data used for land cover classification. Generally, landuse/landcover 
classification is attempted using optical satellite data. Compared to traditional scanning systems, a 
full waveform system retrieves more information that should still be extracted though from the 
waveform shape. The shape of the full waveform contains information on the characteristics of the 
illuminated footprint, like object height, canopy structure and ground surface roughness etc.  The 
study was carried out with an objective to improve urban feature extraction using high resolution 
satellite imagery and Icesat-1 (Ice cloud and elevation satellite) data of parts of Chandigarh city. 
Icesat GLAS waveforms were decomposed into a sum of echoes to characterize the different 
individual targets along the path of the laser pulse. Since the data collected on different dates was 
being used in the study, to neutralize the effect of atmospheric conditions or changes in the behaviour 
of the instrument the waveforms were normalized. To extract the relevant data from the waveform, 
it was subjected to thresholding. The waveform was decomposed into constituting components by 
identifying the peaks and fitting Gaussian curve into it. The parameters to be used for rule based 
classification such as peak height, surface intensity and reflectivity of surface material are extracted 
for individual component. To analyse the urban land cover information content of full-waveform 
data, the waveforms from ICESat-1 release 29 tracks over Chandigarh, India were used for study. A 
total number of 56 footprints were analysed. It was observed that five major land use classes were 
predominant in the available footprints namely Buildings, Roads, Natural Ground, Trees and 
Grasses. Each feature has its own property of transmittance, reflectance and absorbance. Thus, the 
amplitudes of the returns of the waveforms, width and shape of pulse, Δr (difference between pulse 
range and highest range), Δz (altitude difference between first and last pulse in waveform) and 
number of echoes in a waveform were selected as suitable parameters for urban scene classification. 
It was observed that high amplitude values were found for buildings roofs irrespective of the roof 
material. Similar values were reported for sandy open areas. Low amplitude values corresponded to 
vegetation and Tar roads, which can be differentiated based on pulse width as trees records greater 
pulse width. The echoes for grass were less scattered than those of large trees. Extracted features 
were compared with classified results obtained using the Worldview-2 image dataset. The estimated 
accuracy for intra footprint classification of urban scene was found to be 79.31%. 
The study highlights the possibility of utilizing waveform parameters from full waveform data for 
enhancing the classification results. 
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1. Introduction: Creating land cover databases is one of the most important targets in remote 
sensing. Land cover assessment and monitoring of its dynamics are essential requirements for 
sustainable management of natural resources and for environmental protection. Remotely sensed 
images are the main source of data used for land cover classification. Generally landuse/landcover 
classification is attempted using optical satellite data. Full waveform range instrument sends out 
a pulse of a certain width and amplitude. After reflection of the pulse on the objects surface, the 
system records the complete returning pulse signal. This complete signal is the so-called full 
waveform. Compared to traditional scanning systems, a full waveform system retrieves more 
information that should still be extracted though from the waveform shape. Full waveform 
systems brings two important contributions and advantages for additional investigations 
possibilities. First the processing of the received signal can be used to recover all individual 
echoes. This enhances the point cloud density with regard to multiple echos (particularly on forest 
area) as well as the quality of the extracted features within the laser beam corridor. Second by 
modelling the received waveforms, additional features can be extracted from them. This is for 
example the amplitudes (also called intensity) and the pulse width derived by the standard 
deviation of a Gaussian-based decomposition of the waveform. These two values provide mixed 
information about the geometry and the reflectance properties of the illuminated surface. The 
shape of the full waveform contains information on the characteristics of the illuminated footprint, 
like object information (tree and building height), forest structure and ground surface 
characteristics (e.g. forest species surface roughness and slope) as well as a land cover type (water, 
bare earth, or urban areas).  

Backscattered laser intensity measurements have largely escaped attention and have not been used 
as extensively as the three dimensional structure data represented by laser returns. Reflective 
objects on earth’s surface which fall under the diffraction cone have different geometries and 
different reflectance characteristics. These objects imprint their characterstics in form of  
backscattered energy and signal return shape (Fig1).  

 



 

 

 

 

 

 

 

 

 

Fig 1: Pulse shape on varying terrain conditions. a: Flat terrain. B: sloped terrain. C: rough 

terrain. D: mixed flat terrain and building. E: terrain with dense vegetation. F: Terrain with 

low density vegetation. (modified after Pirotti,2010) 

The reflecting objects can be classified in two groups, ground and above ground. Bare ground 
influences the shape of the pulse with its topographic characteristics. Above ground objects can be 
buildings, low and high vegetation and other man-made artifacts. Building roofs, sand and gravel 
areas will record high amplitude values, while the lowest values correspond to vegetation points due 
to higher target heterogeneity and attenuation. Tar roads will also tend to record low amplitude 
values.  

Harding (1998), and Blair et al. (1999) showed that using observations from a full waveform laser 
system it is possible to achieve accurate forest structure and biomass estimates. However, the system 
considered in this case was just operated from an airplane flying at a low altitude of a few kilometers 
above the ground surface with a medium footprint size of about 10-20 m. Moreover, data acquisition 
could only be performed in a small area. Some typical systems used in these days were the Scanning 
Lidar Imager of Canopies by Echo Recovery system (SLICER), the Laser Vegetation Imaging 
Sensor (LVIS), and the commercial airborne full waveform scanning system from RIEGL the LMS-
Q560 (2003). Icesat system acquired data between 2003 and 2009 over the entire earth from 600 km 
altitude, with a footprint size of about 70 m and a distance between consecutive footprints of 
approximately 175 m. However, due to high operational altitude, this system is also affected by many 
error sources, like instrumental and operational problems, atmospheric effects and surface 
conditions.  

Song et al. (2002) applied filters to a gridded representation of intensity data and evaluated its 
potential to classify different materials such as asphalt, grass, roof, and trees. Hasegawa (2006) 
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investigated the characteristics of LIDAR intensity data for land cover classification and indicated 
that it is difficult for extraction of trees without supplementary information because trees have a wide 
intensity range and the range overlaps with the range of other height objects. Brennan and Webster 
(2006) utilized LIDAR height and intensity data to classify various land cover types using an object-
oriented approach. They concluded that through the use of spectral and spatial attributes of LIDAR 
data they were able to classify a variety of land cover types using derived surfaces, image object 
segmentation, and rule-based classification techniques. Recently, LIDAR intensity data were found 
to be directly related to spectral reflectance of the target materials (Ahokas et al., 2006). These 
authors studied the relationship between calibration of laser scanner intensity and known brightness 
targets. They concluded that intensity values were directly related to target reflectance from a variety 
of altitudes (200 m, 1000 m, and 3000 m) after correcting errors due to range, incidence angle (both 
Bidirectional Reflectance Distribution Function, BRDF, and range correction), atmospheric 
transmittance, attenuation using dark object addition and transmitted power (difference in Pulse 
Repetition Frequency, PRF, will lead to different transmitter power values). Comparative studies on 
leaf-on and leaf-off situation have shown that a significant correlated difference can be detected on 
the pulse shape (Duong 2006 a).  Duong et al (2006 b) utilized full waveform ICESAT data for 
landcover classification.  Kim et al (2009) differentiated tree species  using intensity data derived 
from leaf-on and leaf-off airborne laser scanner data. Mallet and Bretar [2009] have specifically 
documented the behavior of small-footprint and large-footprint lidar over building and vegetation 
covers, showing that differences are to be found in the scale and position of diffraction cone in respect 
to the object. Pirotti (2010) analysed the relationship between geometric/radiometric surface 
parameters and pulse shapes in respect to potential utilization of GLAS data for land cover 
classification and concluded that buildings effect laser waveform differently depending on their 
height and size compared to the size of the laser diffraction cone and on the percent of laser spot area 
reaching the ground versus hitting the building. GLAS systematically samples the energy profile 
returned from the surface as a full waveform (Harding and Carabajal, 2005). ICESat data can 
therefore only be used for classifying profiles, as compared to regions mapped by area-sensors. The 
full waveform data gives new possibilities to extract more information about land cover of the earth 
surface. In this study, the full waveform analysis is investigated in the context of land cover 
classification. The study was carried out with an objective to improve urban feature extraction and 
adequate classification of urban domain using high resolution satellite imagery and LIDAR data of 
Icesat (Ice cloud and elevation satellite) of parts of Chandigarh city in India by adapting rule set on 
basis of various normalized difference indices on segmented object in image and retrieved laser data 
of GLAS instrument (geoscience laser altimeter system). 

2. Experimental Approach: The approach followed in the study comprises of following steps: 

2.1 Waveform Signal Processing and Initial parameter Estimation: Icesat GLAS full waveform data 
allows determining the vertical distribution of targets within the diffraction cone with a temporal 
sampling of 1ns. The understanding of such waveforms requires a pre processing step. These waveforms 
can be decomposed into a sum of echoes to characterize the different individual targets along the path 
of the laser pulse. Waveform processing maximizes the detection rate of relevant peaks within each 
signal in order to facilitate information extraction from the raw signal. Also best fit of a waveform is 
selected from a class of functions which allows to extract additional information regarding the target 



shape and its reflectance. For the present study, the product GLA01, the global full waveform data was 
investigated. The waveforms over urban areas were processed and intial parameters such as amplitude, 
width of echo, shape of echo, reflectivity etc were calculated. These parameters were used for generating 
knowledge base for classification of urban landcover features. A probability based classification was 
carried out and accuracy was evaluated. The detailed methodology is shown below in Fig 2.   

 
 

 
Fig 2: Methodology Adopted 

 
 

2.2. Waveform normalization: Due to different atmospheric conditions or changes in the behaviour 
of the instrument, the amount of energy in the laser return pulse may vary with time, even if there 
is no significant change in the ground scenario. These effects altered the comparison of absolute 
energy levels of particular constituents of different waveforms. Thus for comparing waveforms 
captured in different epochs the voltage needs to be normalized. The normalization step required a 
division of the received energy Vi by the total energy VT, at moment i (equation 1). After 
normalization the area under any waveform equaled     
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        VN (i)= Vi/ VT   where         VT =  ∑ Vi                                           Eq 1      (Doung, 2006) 
          i=1 
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2.3 Waveform Thresholding: A waveform contains significant noise at the begin and end of the 
signal. The actual waveform can be obtained using a suitable threshold value. The threshold value is 
individually identified by calculating the mean and standard deviation of the noise in the first 150 
bins of the raw waveform. The signal value less than the threshold was set to zero in the beginning 
and end of the waveform (Fig 3).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 3: Waveform Denoising 

2.4 Waveform decomposition: The raw waveform exhibits a rough shape and requires 
considerable smoothing. Peaks of the waveform are identified by comparing the amplitude of a 
point with neighbouring points. A function is fitted to the identified peaks. Generally Gaussian 
wave is fitted to the estimated peaks. If the transmitted pulse is expected to be Gaussian, the 
waveform can be modeled as a sum of Gaussians (Brenner et al., 2003). Also if the height 
distribution within the diffraction cone follows Gaussian law, the reflected waveform can be 
approximated by sum of Gaussian. This is true for large footprint systems. Generalized Gaussian 
allows tomodel flattened, narrow and high pulses. Log Normal does not improve the fitting 
globally. Non parametric methods fail to provide signal maxima location. Since other available 
functions do not exhibit significant improvement in fitting results, the Gaussian components are 
fitted to the smoothed waveform w(t). Every Gaussian component Wm corresponds to one 
Gaussian bell curve. So, it was assumed that the smoothed waveform w(t) is a sum of Gaussian 
components Wm. That is,  

 
                    Np         
                    w(t) = ∑ Wm (t),   where:   Wm (t) = Am e –(t-tm)2 /2σ2 m 
                  m=1 
 
where w(t) is the amplitude of the waveform at time t, Wm (t) is the contribution from the m-th 
Gaussian component, Np is the number of Gaussians found in the waveform, Am is the amplitude of 
the m-th Gaussian, tm its position and σm its standard deviation. The least squares approach is used 
to compute the model parameters, that is, the values for Am, tm, and σm in the above equation are 
obtained by fitting the theoretical model to the observed waveform in such a way that the difference 
between model and observation is minimized in the least-squares sense. The square sum of the 



residuals itself can be used to quantify the quality of the fit. And due to our normalization step this 
minimal sum and therefore the quality of the fit can be compared between the different waveforms 
(Duong et al, 2006).The fitting step results in a number of Gaussian components with Gaussian 
parameters (Fig 4).  
 

 
 

Fig 4: Waveform Decomposition 
 

2.5 Parameter Estimation: After decomposition and Denoising of waveform we calculated peak height, 
surface intensity and reflectivity of surface material. To straighten waveform processing capabilities 
by fostering information extraction from the raw signal and maximize the rate of detection applicable 
peaks is the main aim of this approach. Table 1 gives parameters for curve analysis 

Table 1: Parameters for curve analysis. 
 

(a)Reflectivity 
=

𝐔𝐧𝐜𝐨𝐫𝐫𝐞𝐜𝐭𝐞𝐝 𝐬𝐮𝐫𝐟𝐚𝐜𝐞 𝐫𝐞𝐟𝐥𝐞𝐜𝐭𝐢𝐯𝐢𝐭𝐲

𝐑𝐨𝐮𝐧𝐝𝐭𝐫𝐢𝐩 𝐀𝐭𝐦𝐨𝐬𝐩𝐡𝐞𝐫𝐢𝐜 𝐓𝐫𝐚𝐧𝐬𝐦𝐢𝐬𝐬𝐢𝐨𝐧
 

(b)Uncorrected 

Surface 

Reflectivity 

=
(3.14 ∗  Energy (received)  ∗  (Range) ^2) 

(Energy (Transmitted)  ∗  Area of Telescope ∗  Optics Transmission
 

 

(c)Round-trip 

Atmospheric 

Transmission 

= e − 2(cloud Optical depth + Aerosol optical Depth 

+  Molecular optical Depth) 

(d)Height =Centroid of last return – Starting time of return * 0.15 

 

 



 
2.6 Knowledge base generation and Rule based classification: To analyse the urban land cover 

information content of full-waveform data, the waveforms from ICESat release 29 tracks over 
Chandigarh, India were used for this research (Fig 5). The data was acquired on 23-02-2003. A 
total number of 56 footprints were analysed.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 5: GLAS footprints overlaid on IKONOS PAN of Chandigarh area 
 
 

3. Result: It was observed that five major land use classes were predominant in the available 
footprints namely Buildings, Roads, Natural Ground, Trees and Grasses. Each feature has its own 
property of transmittance, reflectance and absorbance. Thus, the amplitudes of the returns of the 
waveforms, width and shape of pulse, Δr (difference between pulse range and highest range), Δz 
(altitude difference between first and last pulse in waveform) and number of echoes in a waveform 
were selected as suitable parameters for urban feature classification. It was observed that high 
amplitude values were found for buildings roofs irrespective of the roof material. Similar values 
were reported for sandy open areas. Low amplitude values corresponded to vegetation and Tar 
roads, which can be differentiated based on pulse width as trees records greater pulse width. The 
echoes for grass were less scattered than those of large trees. Ground and building features coincide 
with low pulse width values (Fig 6). For the further analysis of waveform for feature extraction 
reflectance range for tree and buildings has been developed. Reflectance range for Tree was found 
to be 0.32 – 0.48 and that for buildings was between 0.008 – 0.28. Based on the analysis the rules 
were generated for classification of urban features. 
 



 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 6: Knowledge Base Generation 
Parameters discussed above were calculated and analysed. To access the accuracy of the 
classification, the classified and the reference information needs to be compared. One of the most 
common means of expressing classification accuracy is the preparation of confusion matrix. A 
confusion matrix compares on a category by category basis the relationship between known reference 
data and classified data. Classified features were compared with worldview-2 classified features for 
60 returns of GLAS data. To evaluate the quantitative accuracy of the classification of urban feature, 
the extracted feature from laser data were compared with visually interpreted features using google 
earth and optical data of WV-2 satellite. A standard confusion matrix was utilized to quantitatively 
examine classification outputs. The Kappa statistics, and class wise accuracy were calculated to 
access the performance of methodology on individual classes and overall classification. It was found 
that the kappa statistics for classification was 0.71 achieved. The accuracy of individual classes was 
also found to be satisfactory. Table 2 lists out the users and producer’s accuracy for individual 
classes. 
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Table 2: Class wise accuracy statistics 

Classes Producer’s accuracy User’s accuracy 

Trees 76.92% 71.43% 

Buildings 92.86% 65% 

Grounds 74.19% 95.83% 

The results indicate that the full waveform lidar data provides parameters that can be effectively used 
for extracting landuse/landcover information. It is observed that these parameters when analysed 
through a rule based classification method are useful in enhancing the classification results. The 
study highlights the possibility of utilizing these parameters from full waveform data for improving 
the classification accuracy. 
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