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ABSTRACT: Large-scale and accurate monitoring soil salinization is essential for controlling 
soil degradation and sustainable agricultural development. The agricultural irrigation area of the 
Manas River Basin in the arid area of Northwest China was selected as the test area. 337 soil 
samples of different land use types in the study area were collected, combined with 11 bands of 
Landsat images and 17 spectral indices of plant, soil and water. The soil salinization monitoring 
model based on spectral index group was constructed by comparing the accuracy of principal 
component regression (PCR), partial least squares regression (PLSR) and multiple linear 
regression (MLR) models using the transformation of multi-spectral index group and index 
screening. The results showed that there was a certain correlation between the 28 spectral index 
groups, with a maximum correlation coefficient -0.3689 between the original spectral group and 
the soil salt content was B10 band. After the transformation of original data for the logarithm 
Ln(R), exponential eR and square root R1/2 respectively, the correlation between each index and 
soil salinity was significantly improved, with the maximum correlation coefficient was up to -
0.7564 of R1/2. The salt content estimation models were constructed by different data 
transformation using PLSR, PCR and MLR methods, respectively. This study provides a fast and 
accurate method for monitoring regional soil salinity content and the results can provide a 
reference for soil salinity grading management in arid and semi-arid areas.  
 
1. Introduction 

 
Soil salinization is a typical soil degradation phenomenon occurring in arid and semi-arid regions 
(Metternicht and Zinck, 2003; Fernandez-Buces et al., 2006；Wang et al., 2012). At present, global 
salinized soil accounts for about 3% of global land resources, which increases by 2.0×106 hm2 per 
year (Peng et al., 2019). Secondary salinization area is about 7700 hm2, 58% of which occurs in 
irrigated agricultural areas (Metternicht and Zinck, 2003). Due to the high soluble salt content of 
soil parent material, low rainfall, high evaporation intensity, shallow groundwater burial depth 
and unreasonable water resources management, soil salinization is increasingly severe in arid and 
semi-arid areas (Shrivastava et al., 2015). The total area of saline soil in China has currently 
reached 36 million hectares, of which, saline soil in cultivated land accounts for 6.62% (The 



National Soil Survey Office, 1998). Salinized soil not only changes the physicochemical 
properties of the soil, but also inhibits crop growth in severe cases (Wang et al., 2015). 
Accordingly, rapid and accurate acquisition of regional soil salinity dynamics is a prerequisite for 
better utilization of salinized farmland. 
In summary, current inversion of soil salinity by remote sensing technology is mainly to build salt 
content estimation model based on salt-sensitive spectral band or in combination with simple 
spectral index. Studies on optimization, evaluation principles of the model construction index as 
well as comprehensive estimation accuracy of multi-type spectral indexes are still insufficient 
(Jibo et al., 2018; Hao et al., 2018). Therefore, taking saline-alkali soil in Manas River Basin in 
Xinjiang, China as the research object, based on extensive situ measurement of soil salt samples, 
this study integrates Landsat 8 remote sensing data and vegetation, soil and water spectral index 
groups, comparatively analyzes the impact of spectral data transformation, spectral index 
screening group on accuracy of soil salinity inversion model using principal component regression, 
partial least squares regression and multiple linear regression. A quantitative estimation model of 
soil salinity is constructed, accuracy of the salt content inversion model is assessed under different 
model input variables and different model methods to provide a reference for quantitative 
inversion of salinity by remote sensing in arid and semi-arid regions. 
 
2. Materials and methods 

 
2.1 Overview of the study area 

 
Manas River Basin, located in Xinjiang, China, is adjacent to Tianshan Mountains in the north 
and Junggar Basin in the south. The basin is located in the hinterland of Eurasia, with an average 
annual temperature of 4-7°C. It is hot in summer and cold in winter. The precipitation varies 
greatly in time and space, with average annual precipitation at 110-200 mm and annual average 
evaporation at 1500-2100 mm. The geomorphology of the Manas Basin has a typical mountain 
basin system structure, which is mountainous area-piedmont plain-desert in turn (Shao & Cui, 
2003). After the river developed in the southern mountainous region enters the basin, the soil 
carried by it gradually deposits, forming alluvial flood fans, impact plains, and dry deltas in this 
order. Affected by factors such as regional soil parent material, groundwater level, and climatic 
conditions, a large number of different types of saline soils are distributed in the area, especially 
the alluvial fan edges and flood plain with high groundwater level, abundant groundwater volume, 
and poor flow, which cause severe salinization in the top part of the alluvial plain (Wang et al., 
2010). 
 
2.2 Field data acquisition and processing 

 
In this study, a field sampling survey was carried out on Manas River Basin from July to August 
2017. The layout of the samples gave comprehensive considerations to different land use types, 
planting structures, landform types, irrigation methods and soil types. A total of 337 observation 
sample regions were set in sampling points with wide coverage, representativeness and diverse 
terrain types (Figure 1). GPS was used to accurately locate and record coordinates of each 
sampling point. Each plot area is about 30 m×30 m (corresponding to single pixel area in Landsat 
image). In each sample area, 5 soil surface samples (0-20 cm) were collected by five-point 



sampling method, uniformly mixed to form a mixed soil sample and brought back to the laboratory. 
After drying, sieving and grinding, the samples were screened through 2 mm sieve. Total salt 
content of the soil was determined by gravimetric method with a 1:5 soil-to-water solution (BAO, 
2010). A total of 337 samples were randomly divided into two groups, of which 253 were used 
for modeling (75% of the samples) and 84 samples were used for verification. 
 

Table 1 Descriptive statistical analysis table of soil sample salt content 
Sample（number） Mean（g kg-1） Max（g kg-1） Min（g kg-1） SD（g kg-1） CV（%） 

Calibration data set（253） 15.67 35.29 0.38 7.26 46.33 

Validation data set（84） 17.56 34.28 0.30 7.39 42.08 

Total sampling points（337） 16.14 35.29 0.30 7.32 45.35 

 

 
Figure 1 distribution map soil salinity at sampling points in the test area 

 
2.3 Image data processing and index selection 

 
The selection of remote sensing image data was basically consistent with field sampling of soil in 
time. The Landsat 8 remote sensing image of the Manas River Basin in Xinjiang, China on July 
13, 2017 was collected (www.gscloud.cn/). The projected coordinate system is UTM-WGS84, 
with a total of 11 bands (B). The image preprocessing work of geometric correction, radiation 
calibration and FLAASH atmospheric correction was carried out using ENVI 5.3 software, and 
the surface reflectance value of each band corresponding to the field sampling points was 
extracted. Spectral index can magnify weak connection between the amplification bands, reduce 
model complexity and remove redundant variables (Shi, 2014). Many researchers have tried to 
introduce it into remote sensing inversion model to improve estimation accuracy of the model 
(Allbed et al., 2014; Kertész & Tóth, 1994). After consulting domestic and foreign literatures, 17 
spectral indexes related to soil salinity inversion were selected as analysis indexes, including 5 
vegetation indexes (V), 11 soil indexes (S) and 1 water body index (W) (Table 2). 
 

Table 2 Spectral index and formula 



Salinity 
Indices Full name Spectral Functions Reference 

NDVI Normalized difference 
vegetation index  NDVI = （ρ𝑁𝑁𝑁𝑁𝑁𝑁 − ρ𝑅𝑅）/(𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁 + 𝜌𝜌𝑅𝑅) Rouse (1973) 

GDVI Generalized Difference 
Vegetation Index  GDVI = (𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛 − 𝜌𝜌𝑅𝑅𝑛𝑛)/(𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛 + 𝜌𝜌𝑅𝑅𝑛𝑛) Sripada et al. (2006) 

WDVI Weighted difference vegetation 
index  WDVI = ρ𝑁𝑁𝑁𝑁𝑁𝑁 − a × 𝜌𝜌𝑅𝑅 Basso et al. (2000) 

SAVI Soil Adjusted Vegetation Index  SAVI =
(ρ𝑁𝑁𝑁𝑁𝑁𝑁 − ρ𝑅𝑅)
ρ𝑁𝑁𝑁𝑁𝑁𝑁 + ρ𝑅𝑅 + 𝐿𝐿 × (1 + 𝐿𝐿), 𝐿𝐿 = 0.5 Huete (1988) 

RVI Ratio vegetation index  RVI = ρ𝑅𝑅/ρ𝑁𝑁𝑁𝑁𝑁𝑁 Pearson et al. (1972) 
NDSI Normalized difference salinity 

index  NDSI = (ρ𝑅𝑅 − ρ𝑁𝑁𝑁𝑁𝑁𝑁)/(ρ𝑅𝑅 + ρ𝑁𝑁𝑁𝑁𝑁𝑁) Tripathi et al. (1997) 

SI Salinity Index  SI = �𝜌𝜌𝐵𝐵 + 𝜌𝜌𝑅𝑅 Tripathi et al. (1997) 
SI1 Salinity Index 1  SI1 = �𝜌𝜌𝐵𝐵 + 𝜌𝜌𝐺𝐺  Khan et al. (2005) 
SI2 Salinity Index 2  SI2 = �𝜌𝜌𝐺𝐺2 + 𝜌𝜌𝑅𝑅2 + 𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁2 Douaoui et al. (2006) 
SI3 Salinity Index 3  SI3 = �𝜌𝜌𝑅𝑅2 + 𝜌𝜌𝐺𝐺2  Douaoui et al. (2006) 
S1 Salinity Index  S1 = 𝜌𝜌𝐵𝐵 𝜌𝜌𝑅𝑅⁄  Bannari et al. (2008) 
S2 Salinity Index   S2 = (𝜌𝜌𝐵𝐵 − 𝜌𝜌𝑅𝑅)/(𝜌𝜌𝐵𝐵 + 𝜌𝜌𝑅𝑅) Bannari et al. (2008) 
S3 Salinity Index   S3 = (𝜌𝜌𝐺𝐺 × 𝜌𝜌𝑅𝑅)/𝜌𝜌𝐵𝐵 Bannari et al. (2008) 
S5 Salinity Index S5 = (𝜌𝜌𝐵𝐵 × 𝜌𝜌𝑅𝑅)/𝜌𝜌𝐺𝐺 Khan et al. (2007) 
S6 Salinity Index S6 = (𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁 × 𝜌𝜌𝑅𝑅)/𝜌𝜌𝐺𝐺  Khan et al. (2007) 

SI-T Salinity Index SI − T = 𝜌𝜌𝑅𝑅/𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁 × 100 Tripathi et al. (1997) 
LSWI Land Surface Water Index  LSWI = (𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁 − 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)/(𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁 + 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) Nield et al. (2007) 

 

2.4 Remote Sensing Inversion Model of Soil Salt 
 

In order to find the relationship between the selected indexes and soil salinity, all remote sensing 
indexes were subject to mathematical transformation. There will be errors in remote sensing 
images due to lighting conditions and terrain factors, and mathematical transformation can lower 
the impact of noise on spectrum to a certain extent, thereby strengthening the relationship between 
remote sensing indexes and soil salinity. To further analyze the relationship between soil remote 
sensing index and soil salinity, the soil salt content data of each sampling point and the 
standardized soil remote sensing index (indicated by R) were mathematically transformed, and 
the transformation forms include reciprocal (1/R), exponent (eR), logarithm (Ln(R)), reciprocal of 
logarithm (1/ln(R)), reciprocal of exponent (1/eR), root mean square (R1/2). All the indexes were 
standardized using the formula as follows: 

x´ = (x − xmin)/(xmax − xmin) 
Whereas x is an original value, x´ is the normalized value. 
For the selection of sensitive bands for remote sensing modeling of soil salinity, soil salinity 
content and all indexes under each transformation are usually selected for correlation analysis. At 
present, remote sensing technology mainly adopts regression model for inversion of soil salinity. 
In this study, principal component regression (PCR), partial least squares regression (PLSR) and 
multiple linear regression (MLR) modeling methods were selected for remote sensing inversion 
of soil salinity. The accuracy of the salt interpretation model was tested by cross-validation, and 
the optimal model was selected by comparing accuracy and reliability of the model based on the 
determination coefficient of the test model, the root mean square error value. For higher R2(V), 
the stability and fitting degree of the model is higher; for lower RMSE(V), the model has better 
estimation capacity. 
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where iy is the observed value, iŷ  is the interpreted value, iy is the mean value, and n is the 

number of data points. C represents for calibration and P represents for validation. 
 
3 Result analysis 

 
3.1 Correlation between soil salinity and band, spectral index 

 
In order to understand the sensitivity of different remote sensing bands to soil salinity, the 
correlation between soil salinity in the study area and the original band reflectance of Landsat was 
analyzed. Except B6 and B8 bands (whose correlation coefficients are 0.094, -0.058, respectively), 
indexes of other bands have a significant correlation with salt, and the largest relevant B10 band 
has a correlation coefficient of 0.3689, which is consistent with the results of Peñuelas (1997). 
Soil salt is significantly negatively correlated with B10 and B11 bands, with correlation 
coefficients r of -0.369 and -0.359, respectively. A significant correlation is shown between soil 
salt content and salinity index, vegetation index. Where, the correlation coefficient between SI2 
and salt content is -0.3129, and the correlation coefficients of RVI, NDVI, WDVI and SAVI are -
0.3027, -0.3078, -0.3143 and -0.3112, respectively. Each vegetation index shows a significant 
negative correlation, which is probably because the sampling time is July when the surface has 
different degrees of vegetation coverage, if the soil salt content exceeds a certain value, plant 
growth will be inhibited, leading to increased reflectance of red light band and decreased 
reflectance of near-infrared band, thereby affecting the associated vegetation index. 
 

 
Figure 2 Correlation heat map between original index and soil salinity  

 



Figure 3 shows the correlation coefficient between each index and salt content after 1/Ln(R), 1/eR, 
1/R, Ln(R), eR and R1/2 transformation of the original data. It can be seen that 1/Ln(R), 1/eR, 1/R 
data transformations fail to significantly increase the correlation between each index and salt, but 
after logarithmic transformation Ln(R), exponential transformation eR and square root 
transformation R1/2, the correlation between each index and soil salinity is significantly improved. 
Where, Ln(R) and eR transformations can significantly improve the positive correlation with B5, 
SI2, S1, S2, RVI, NDVI, GDVI, WDVI, SAVI and LSWI, and improve negative correlation with 
B2, SI,SI1,SI3,S3,S5,SI-T and NDSI; R1/2 transformation can improve positive correlation with 
B1, B2, B3, B4, B6, B7, SI, SI1, SI3, S3, S5, SI-T and NDSI, and improve negative correlation 
with B5, B10, B11, SI2, S1, S2, S6, RVI, NDVI, GDVI, WDVI, SAVI and LSWI. The vegetation 
index in each transformation is negatively correlated to the salt index, which also indicates that 
the vegetation index decreases as soil salinity increases. 

 
Figure 3 Correlation coefficient map of different index and soil salt content after 6 

transformation 
Note: R represents normalized variables. 
 
3.2 Construction of soil salinity interpretation model 

 
3.2.1 Estimation accuracy of different data transformation models 

 
The soil salt content estimation model was constructed by PLSR, PCR and MLR methods 
respectively, and the effect of different data transformations on the accuracy of the estimation 
model was compared and analyzed (Table 3). Seen from determination coefficient and root mean 
square error of the model, after eR, 1/eR, Ln(R), 1/Ln(R) and R1/2 transformations of the original 
spectrum, determination coefficient R2(C), root mean square error RMSE(C) of the modeling set, 
plus determination coefficient R2(V), root mean square error RMSE(V) of the prediction set are 
significantly improved. After eR,1/ eR, Ln(R), 1/Ln(R), R1/2 transformations, PLSR method-based 
modeling set R2(C) are 0.6347, 0.5899, 0.6083, 0.5752 and 0.6489, respectively, and RMSE(C) 
are 4.4924, 5.1904, 4.6521, 5.2503 and 4.0345 g kg-1, respectively. PLSR method has superior 
estimation accuracy than PCR and MLR methods, indicating that data transformation through 
spectral indexes has certain effect on improving accuracy and stability in soil salt content 
prediction. The inversion accuracy of five mathematical transformation forms is comprehensively 
compared. R1/2 transformation model has more significant modeling and prediction effects than 



models eR, 1/eR, Ln(R) and 1/Ln(R), and R2 of the modeling set and the prediction set are 0.6489 
and 0.6033, respectively, while RMSE are 4.0345 and 4.5456 g kg-1, respectively, suggesting that 
R1/2 transformation can better eliminate the effect of natural factors such as soil texture and soil 
parent material as well as human factors on spectral index, thus enhancing accuracy of spectral 
index in estimating soil salt content. 
 

Table 3 Estimation accuracy of different data transformation 
Data  

Transfor-

mation 

PLSR   PCR   MLR 

R2(C) 
RMSE(C) 

R2(V) 
RMSE(V) 

 R2(C) 
RMSE(C) 

R2(V) 
RMSE(V) 

 R2(C) 
RMSE(C) 

R2(V) 
RMSE(V) 

(g kg-1) (g kg-1) (g kg-1) (g kg-1) (g kg-1) (g kg-1) 

R 0.4749 5.0811 0.2487 8.1683  0.3511 7.0081 0.2204 8.198  0.3048 6.8841 0.1039 11.8955 

1/R 0.3283 6.1599 0.2318 8.0962  0.3057 7.0107 0.2611 8.0687  0.2961 7.0022 0.1251 10.0285 

eR 0.6347 4.4924 0.4249 5.0514  0.5339 5.0748 0.4446 5.4958  0.5021 4.8623 0.1532 9.6235 

1/eR 0.5899 5.1904 0.459 6.0092  0.5065 4.9259 0.3978 6.0883  0.4964 4.9759 0.355 7.4023 

Ln(R) 0.6083 4.6521 0.1904 5.9934  0.4647 5.4385 0.3785 6.2766  0.4632 5.1374 0.2497 8.2145 

1/Ln(R) 0.5752 5.2503 0.4154 6.2463  0.5106 4.9051 0.4207 5.8406  0.4806 5.3569 0.329 7.9767 

7.0101 R1/2 0.6498 4.0345 0.6033 4.5456   0.5634 4.6333 0.5237 5.0075   0.5281 4.6079 0.3983 

 
3.2.2 Calibration index and accuracy of model 

 
In the study, 28 spectral group indexes were selected and added to the model from big to small 
according to absolute values of correlation, so that the relationship between the number of 
screening index factors and equation determination coefficient as well as equation prediction 
accuracy was obtained. Figure 4 shows accuracy verification of the PLSR model when different 
variables are selected under different data transformation. When the number of factors 
participating in the modeling increases gradually, except 1/R transformation form, the other six 
transformation forms show consistent variation trend in model verification accuracy. That is, as 
the number of model factors increases, model stability increases first and then decreases, while 
fitting performance of 1/R transform processing model increases with the increase of index factor, 
reaching optimal state when all factors participate in the modeling (R2(V) and RMSE(V) are 
0.2318 and 8.0962 g kg-1, respectively). Seen from determination coefficient of soil salinity and 
prediction accuracy, except 1/R and Ln(R), the soil salt monitoring models of other 
transformations are superior to the original spectral modeling results, indicating that certain data 
transformation of the original spectral data helps improve monitoring accuracy of soil salinity. 
Considering soil salinity prediction accuracy and model complexity, R1/2 transformation not only 
has higher verification accuracy (the model verification accuracy R2(V) is increased from 
0.1751~0.2786 in the original spectral index model to 0.4351~0.6472), but also achieves the 
highest prediction accuracy when fewer factors (n=10) are introduced to the model. 
 



 
Figure 4 Influence of variable numbers to model reliability of PLSR model under 6 

transformation 
 
3.2.3 Optimization and verification of the estimation model 

 
Based on the principle of maximum R2(V) and minimum RMSE(V), the PLSR model with 10 
factors of R1/2 transform participating in modeling (R2(V) is 0.6472 and RMSE(V) is 4.3106 is 
selected as the optimal model. It can be seen that a good linear relationship is shown between the 
predicted value and the measured value as a whole. Most samples are distributed on both sides of 
the 1:1 line. However, some samples deviate from the 1:1 line, and measured salt mass fraction 
between 0~10 g kg-1 inverse values between 7~12 g kg-1, which are higher than the measured 
value. 
 

 
Figure 5 The coefficient of optimal model and verification (10 variables of PLSR model under 

R1/2 transformation) 
 
3.3 Remote sensing inversion of soil salinity 

 
The optimal model of this study was applied to remote sensing images, and the soil salt content 
distribution map of Manas River Basin was obtained by inversion (Figure 6). Most of the farmland 
soil in the study area belongs to moderate and severe salinized soil, accounting for 58.97% and 
25.41% of farmland in the irrigation area of Manas River, respectively. The areas with severe soil 
salinization are mainly located in the southeast of Manas River Basin, which is mainly because 
the area is located at alluvial-proluvial fan edge of the basin, with shallow burial depth of 
groundwater and unsmooth flow, and the soil texture is mainly clay loam with high salt content. 



 
Figure 6 Inversion of soil salinity content in Manas River Basin 

 
4 Conclusion 

 
In this paper with Xinjiang Manas River Basin as the research area, a quantitative estimation 
model of soil salinity is constructed by integrating field measured data, Landsat8 remote sensing 
data and vegetation, soil and water spectral index groups. The conclusions are drawn as follows: 
(1) There is low correlation between the reflectance of original band of Landsat satellite image, 
with the highest in B10 band (0.3689). Logarithmic transformation Ln(R), exponential 
transformation eR and square root transformation R1/2 of the spectral group data significantly 
improve the correlation between soil salinity and various indexes. Where, transformation form 
with the most significant increase is R1/2, with a maximum increase of S5, which is increased by 
0.4510 compared with the original correlation coefficient, indicating that spectral transformation 
is an effective way to improve the correlation between spectral index and salt content. 
(2) In comparison of the three methods of PLSR, PCR and MLR for constructing soil salt 
estimation model, based on all spectral index modeling, PLSR model is the best, followed by PCR 
model and MLR model is the worst. 
(3) By adding the spectral group index of the seven data transformation forms to the PLSR model 
from big to small according to the absolute value of the correlation coefficient, it is found that 
except 1/R transformation, stability of the other six transformational models first increases and 
then decreases as the number of factors increases. Finally, according to the principle of maximum 
R2(V) and minimum RMSE(V), the PLSR model with 10 factors of R1/2 transformation 
participating in modeling is selected as the optimal interpretation model for soil salinity (R2 (V) 
is 0.6472 and RMSE (V) is 4.3106 g kg-1). 
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