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ABSTRACT: Laguna de Bay, being the largest lake in the country, is one of the primary 
sources of freshwater fish supply in Metro Manila and surrounding provinces. Moreover, the 
lake water is used for irrigation and domestic supply after being subjected to water filtration 
and treatment. Given these economic benefits, it is important to maintain the lake’s health and 
overall water quality to minimize potential losses due to fish kill and pollution. Conventional 
water quality monitoring of the lake involves routine ground measurement of different 
parameters such as temperature, chlorophyll-a concentration, total suspended solids (TSS), 
turbidity, dissolved oxygen (DO), total phosphorus (TP), total nitrogen (TN), total chloride 
(TCl), and pH on pre-selected stations. However, these point measurements do not fully 
represent the complex dynamic water systems in the whole lake, which has an approximate 
area of 900 km2. To fully understand these dynamic systems, both comprehensive spatial and 
temporal monitoring is needed, which can be addressed using satellite sensors such as the 
Moderate Resolution Imaging Spectroradiometer (MODIS). In this study, MODIS surface 
reflectance (MOD09GA) bands and ground measurements spanning from 1999 to 2010 were 
used to derive models for TSS, TN, TCl, TP, turbidity, alkalinity, and pH mapping in 4 different 
stations. The dataset was divided for the training and validation of the Multiple Linear 
Regression (MLR) and Cascade Forward-Feed Neural Network (CFF-NN) models. Results 
show better performance, with a lower root mean squared error (RMSE) and higher coefficient 
of determination (R2), from water quality models based on the CFF-NN compared to MLR. 
Among the water quality parameters, TSS and turbidity derived using the CFF-NN model were 
observed to have the highest correlation with the surface reflectance bands. The high skill score 
of the CFF-NN model was found to be related in its ability to capture the variability of TSS 
and surface reflectance bands with season and sampling stations. With the addition of ground 
datasets, the water quality models’ accuracy may be improved and provide vital information 
on the lake dynamics and insights on the occurrence of undesirable events such as fish kill. 
 
 

1. INTRODUCTION 
 

Among modern optical satellite systems, MODIS is one of the satellite sensors that provide a 

long historical data archive (1999 - 2020) with a track record of good radiometric accuracy 

suitable for terrestrial and coastal observations (Xiong, 2020; Liu, 2019; Chander, 2009). 

Furthermore, its revisit period of 1 to 2 days makes it advantageous over other satellite sensors 

designed for environmental monitoring. The MODIS sensor has a total of 16 bands in the visible-

SWIR region, designed for ocean and terrestrial observations (Franz, 2006). From the 16 

MODIS bands, 9 bands were particularly designed to be sensitive to the typical reflectance 

values of open ocean. These ocean bands, however, saturate on coastal and inland waters 

characterized with high suspended particulates and turbidity. For such cases, several studies had 

utilized the terrestrial bands for water quality assessment (Yang, 2018; Wang, 2010, Mller, 
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2004). Typically, water quality assessment of complex coastal and inland waters entails the use 

of Level-1 or Level-2 MODIS products to derive different geophysical parameters such as 

chlorophyll-a and suspended solid concentration. Before the period of cloud computing, these 

data should be manually downloaded and stored for processing. Processing a decadal time-series 

of these images would take a huge amount of time and storage. With the advancement of 

technology, cloud computing platforms are now available to process these images without the 

need for the actual downloading of the whole dataset. One of these platforms useful for remote 

sensing applications is the Google Earth Engine (GEE) (Gorelick, 2017 and Liu, 2018). The 

GEE supports the archiving and processing of multiple satellite products from different sensors 

aside from MODIS such as the OLI/Landsat-8, MSI/Sentinel-2, and OLCI/Sentinel-3.  

 

The aim of this study is to utilize the Level-2 surface reflectance product of MODIS/Terra 

(MOD09GA) retrieved through the GEE platform and use it as input for the water quality 

modeling of Laguna de Bay, the largest lake in the Philippines. Laguna de Bay is widely used 

for aquaculture, supplying a large fraction of the freshwater fish demand on the island of Luzon 

(Cuvin-Aralar, 2001 and Santos-Borja, 2003). Being surrounded by the mega manila cities and 

municipalities, the lake is prone to water pollution from anthropogenic activities, making a 

comprehensive water quality monitoring scheme of the lake crucial in maintaining its health. 

MOD09GA products had been previously used to study agriculture and drought in the 

Philippines, however, to our knowledge, no existing study has utilized MODIS surface 

reflectance products for water quality assessment of different inland water bodies in the country 

(Hafeez, 2002 and Boschetti, 2015). In this study, different water quality parameters such as the 

total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP), pH, and dissolved 

oxygen (DO) will be modeled using multiple linear regression (MLR) and cascade-forward feed 

neural networks (CFF-NN) implemented in MATLAB.  

 

 

2. METHODOLOGY 

 

Water quality data collected by the Laguna Lake Development Authority (LLDA) spanning 

from 1999 to 2010 were used in this study. Samples for DO, TN, TCl, pH, TP, and TSS were 

collected monthly in 4 different stations and analyzed in the laboratory. Satellite data 

(MOD09GA) coincident with the ground measurements were collected using the GEE 

platform. Spatial and spectral subsetting was conducted using the GEE platform to retrieve the 

image pixels coincident with the available ground data. In this manner, rapid extraction of 

relevant information from a decadal dataset was done. 

 

For the water quality modeling, the total number of matching satellite and ground data were 

divided into training and validation dataset. Using stratified random sampling, two-thirds of 

the data were used for training/developing the cascade forward-feed neural network (CFF-NN) 

and multiple linear regression (MLR)  models while the remaining one-third were used for the 

validation of the models. The Vis-NIR bands (band 1- 4) from MOD09GA were used as inputs 

in the MLR and CFF-NN models. Finally, neural network models for dissolved oxygen, pH, 

TN, TP, Cl, and TSS are validated and analyzed. A more detailed processing workflow is 

illustrated in Figure 1. Note that there are varying number of measurements per water quality 

parameter. Hence, the total number of training and validation points differs for the DO, TSS, 

TCl, TN, TP, and pH. In general, the total number of training and validation points range from 

70 to 100 and 30 to 50, respectively, The Coefficient of Determination (R2) and Root Mean 

Square Error (RMSE) were used as metrics for the accuracy assessment. 

 

 



 
Figure 1. The processing workflow for water quality modeling and validation. The RGBN 

bands correspond to the Red (B1), Green (B4), Blue (B3), and NIR (B2) bands of 

MOD09GA. 

 

 

3. RESULTS & DISCUSSION 

 

Table 1 shows the respective coefficient of determination (R2) from the MLR and CFF-NN model 

for each water quality (WQ) parameters studied. Among the WQ parameters, R2 greater than 0.5 

was obtained on TSS and Turbidity for both models while the least R2 was observed on TN. This 

indicates that among the WQ parameters the TSS and Turbidity is best described by both models 

while poor reliability on the TN models based on the four spectral bands of MOD09GA is 

expected. Table 2 shows the accuracy assessment of the models for each WQ parameter using the 

validation dataset. The CFF-NN outperforms the MLR model as observed from higher R2 and 

lower RMSE in all WQ parameters. While a bias may be attributed to CFF-NN due to the 

optimization usually conducted to train NN models, these results show the potential of neural 

networks to look for the best model that will describe the WQ parameters. Since the training and 

validation dataset comprise of ground measurements from 4 different stations for each month, 

season and location may be the contributing factors that produce the high skill of the CFF-NN. 

To verify this hypothesis, the training and validation dataset were grouped per season and 

location. The test was conducted on the TSS since this parameter is known to have an established 

relationship with the visible and NIR bands, thus, justifies the use of MLR in the grouped dataset.  

Figure 2 shows the correlation plot of ground TSS with the CFF-NN modeled as well as the MLR 

deconvolution models. The data of the deconvoluted MLR models were categorized based on the 

sampling stations and seasonality. For the MLR_Season model, 2 TSS MLR models were 

derived, corresponding to the dry (January – June) and wet (July – December) season. Meanwhile, 

4 different MLR TSS models corresponding to 4 different sampling stations were derived for 

MLR_Station model. For the MLR_Season_Station model, a total of 8 unique TSS models were 

derived, corresponding to 2 different models per sampling station accounting for the dry and wet 

season. It can be seen in Figure 2 that categorizing the dataset according to sampling station and 

season significantly increase the performance of the MLR model to predict the TSS values. 

Comparison with the CFF-NN TSS model showed that the MLR_Season_Station has a better 

prediction capability, having an R2 of 0.88 compared to 0.80 of CFF-NN. For visualization. 

Figure 3 shows the TSS map of Laguna de Bay derived using the MLR and CFF-NN model. 



Table 1. Statistical metrics of the training models  

 
 

 

Table 2. Accuracy assessment of  MLR and CFF-NN model 

 
 

High correlation between TSS/Turbidity and the visible bands, particularly on the red and NIR 

bands was previously observed in different studies. The concentration of suspended solids is 

found to be directly related to the backscattering of the incident light in the red and NIR region 

of the electromagnetic spectrum (Novo, 1991 and Yepez, 2018). Though the TSS concentration 

is highly correlated with the reflectance at the red and NIR bands, results from different studies 

show that the linear model may vary regionally, depending on the concentration of other 

optically-active water constituents as well as the sediment composition and size (Martinez, 2015; 

Siev, 2018; Santos, 2017). On the other hand, the relationship of optical bands with other WQ 

parameters such as DO, pH, TN, TCl, and TP has not been fully established. In fact, there are no 

known spectral signature of these parameters on the optical region of the electromagnetic 

spectrum. WQ models of these parameters are usually generated using machine learning 

algorithms. Good prediction of these WQ parameters through the neural network model may be 

attributed to its ability to determine patterns on the ground dataset potentially originating to the 

spatial and seasonal variability of the water quality as evident to the test conducted for the TSS 

modeling. While this limits the derived WQ models to be extended for global waters, these 

models may provide important insights on the spatiotemporal dynamics of the local inland water 

body such as the Laguna de Bay. Time-series analysis of these WQ parameters may provide 

information useful in predicting undesirable events such as fish kill occurrences. 

 

 

Parameters R2 (MLR) R2 (CFF-NN) n p-value

TSS (mg/L) 0.68 0.71 63 < 0.001

Turbidity (NTU) 0.52 0.7 62 < 0.001

Alkalinity (mg/L) 0.26 0.37 81 < 0.001

TN (mg/L) 0.16 0.24 73 < 0.1

TP (mg/L) 0.33 0.39 74 < 0.001

Cl (mg/L) 0.32 0.43 88 < 0.001

DO (mg/L) 0.24 0.42 82 < 0.001

pH 0.26 0.49 86 < 0.001

Training Models

Parameters R2 RMSE R2 RMSE n

TSS (mg/L) 0.74 10.9 0.8 9.76 33

Turbidity (NTU) 0.73 12.51 0.81 10.86 28

Alkalinity (mg/L) 0.3 19 0.4 18.08 35

TN (mg/L) 0.02 1.11 0.08 1.08 37

TP (mg/L) 0.44 0.074 0.48 0.068 38

Cl (mg/L) 0.35 190.69 0.55 160.51 44

DO (mg/L) 0.09 1.18 0.11 1.17 43

pH 0.09 0.54 0.2 0.51 43

MLR CFF-NN

Validation



 

 
Figure 2. Accuracy assessment of the TSS training models including the deconvoluted MLR 

models based on season only (MLR_Season), station only (MLR_Station), and both season and 

station (MLR_Season_Station).  

 

 
Figure 3. The (Left) RGB and TSS map of Laguna de Bay derived using the (Middle) MLR and 

(Right) CFF-NN model. The CFF-NN TSS map appears to be more sensitive in detecting 

change in the TSS values. 
 

 

4. SUMMARY 
 

Water quality parameters such as TSS, turbidity, alkalinity, TN, TP, pH, and DO were modeled 

using MLR and CFF-NN models. Results show optimal performance from the CFF-NN model 

in all WQ parameters, indicating its potential for long term monitoring of the Laguna lake. The 

high skill performance of the CFF-NN is attributed to its ability to identify the pattern in location 

and season of the dataset during the process of model optimization. Among the WQ parameters, 

the highest correlation with the MOD09GA spectral bands was obtained from TSS. To further 

improve the accuracy of the models, additional ground measurements for calibration-validation 

dataset is recommended.    
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