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ABSTRACT: Invasive alien wattle disturbs ecological and economic sectors in South Africa, 
which may lead to losses in biodiversity and ecosystem services. Remote sensing techniques 
utilized for early detection and mapping of invasive wattle are pivotal in the South African 
context, as the relevant decision-making processes need to be taken to eradicate and reduce 
invasion. In this study, we integrated image texture combinations computed from a SPOT-6 
image with sparse partial least squares discriminant analysis (SPLS-DA) to detect invasive alien 
wattle and surrounding land cover classes. From the results, the texture combination model (OA 
= 74%; kappa statistic = 70) outcompeted the single band image texture model (OA = 68%; kappa 
statistic = 65) and vegetation indices (OA = 62%; kappa statistic = 59). The most significant 
texture parameters selected by the SPLS-DA model were correlation, second moment and 
homogeneity, which were predominantly computed from the red and NIR bands. The 5×5 
moving window was the most frequently selected window for detecting and mapping invasive 
alien wattle. Overall, this study confirms the ability of image texture combinations integrated 
with SPLS-DA to detect and map the spatial distribution of invasive alien wattle. 

 

1. INTRODUCTION 

 

Wattle is a leading invasive alien plant (IAP) species in South Africa, and its increasing spatial 

distribution has invaded more indigenous environments. It has spread globally through wind, 

water and animal dispersal (Gwate et al., 2016), where large quantities have been found in the 

KwaZulu-Natal (KZN) province of South Africa. Invasive alien wattle has high water 

consumption, which results in rapid growth and proliferation rates into grassland and arable land 

(de Neergaard et al., 2005). Wattle may be defined specifically based on the various plant species 

that fall under its genera, such as Acacia mearnsii (black wattle) and Acacia dealbata (silver 

wattle). Young tree and shrub-like wattle display similar characteristics in appearance and 

growth, making it difficult to distinguish one species from another at early growth stages (de 

Neergaard et al., 2005). Therefore, this study collectively investigates wattle species as a general 

alien invader in KZN, where Acacia mearnsii and Acacia dealbata are the predominant wattle 

species found in the area. 

Conventional methods of minimising the impacts of IAPs include biological, chemical and 

mechanical control measures, which are well documented in South African literature. This is 

due to the high demand for locating invasive species during early growth stages (Huang and 

Asner, 2009). However, these methods are expensive, subjective and impractical over large 

spatial scales, because the full distribution extent is unknown. Thus, remote sensing assists in 

detecting and mapping IAPs, where information can be utilised in decision-making to manage 

invasive alien wattle through efficient eradication measures. Using remote sensing for detection 

and mapping offers objective, inexpensive and spatially explicit data of ground surface processes 

that are beneficial in vegetation mapping (Lottering et al., 2019). Remote sensing of invasive 

wattle is minute in South Africa, as detection of IAPs is generally broad and not specific to a 
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particular alien invasive species (Bradley, 2014) or genus. Therefore, it is imperative to utilise 

accurate and timeous methods of detecting and mapping IAPs, as the detection and mapping 

allow the necessary control methods to be implemented (de Neergaard et al., 2005). 

Image texture is an effective scale-dependent remote sensing technique, which examines the 

local variance of a variation of grey image tones and can define the spatial arrangements of 

objects in high spatial resolution imagery (Franklin et al., 2001). For example, Lottering et al. 

(2020) successfully detected and mapped invasive bugweed and surrounding commercial forest 

species using image texture derived from WorldView-2 imagery. However, Lottering et al. 

(2019), Hlatshwayo et al. (2019) and Nichol and Sarkar (2011) have shown the significance of 

image texture combinations in improving the detection and mapping of spatial phenomenon.  

Image texture combinations improve detection through its ability to simplify the structure of the 

canopy and reduce image errors such as atmospheric effects, sun angle effects and sensor angle 

effects (Lottering et al., 2019, Myneni et al., 1995). The various texture parameters can enhance 

the structure of vegetation on the earth’s surface through the use of ratios that are formed by 

combining these parameters (Lottering et al., 2019). Different vegetation encompasses different 

textures due to their structural makeup, therefore are discernable in remotely sensed textural 

data. For instance, Hlatshwayo et al (2019) successfully mapped forest above-ground biomass 

using texture combinations computed from SPOT-6 pan-sharpened imagery. However, image 

texture combinations may be considered highly data dimensional and redundant, therefore 

requiring effective methods for feature extraction. 

Therefore, we proposed using the SPLS-DA algorithm as it uses a sparsity solution and 

simultaneously performs variable selection and dimensionality reduction (Chun and Keleş, 

2010). SPLS-DA is a multivariate technique based on the partial least squares approach. 

Lottering et al (2020) successfully detected and mapped bugweed using image texture and the 

SPLS-DA algorithm. The SPLS-DA algorithm was able to select the best texture variables and 

reduce data dimensionality within the dataset. However, to the best of our knowledge, no study 

has tested the utility of SPLS-DA and image texture combinations in effectively detecting and 

mapping invasive alien wattle.  

As a result, this study aimed to investigate the potential use of image texture combinations 

computed from a 6 m SPOT-6 image integrated with the SPLS-DA algorithm to identify and 

map alien invasive wattle. In addition, the image texture combination model was compared to 

the single image texture bands and vegetation indices in detecting invasive alien wattle.  

 

 

2. MATERIALS AND METHODS 

 

2.1 Study Area 

 

The study was conducted in the low-lying Midlands area (29°16’43”S; 29°48’15”E) (Figure 1) of 

KwaZulu-Natal, which lies adjacent to Mooi River and Escourt and stretches to the western 

KwaZulu-Natal border. The study site covers an area of approximately 606 km2 and experiences 

hot, humid summers that are characterised by heavy rainfall and mild, dry winters. The area 

receives an average annual rainfall of 975.44 mm, which generally occurs in summer and spring. 

This area is dominated by the grassland biome, where invasive wattle has been pivotal in altering 

grassland on-site and influence rangeland production (Gwate et al., 2016). The landscape elevation 

ranges from 1130 to 1410 m above sea level, with temperatures ranging from 9.2°C to 37.2°C. 

 



 
Figure 1: Location of the study area in KwaZulu-Natal, South Africa 

 

2.2 Image Acquisition and Preprocessing 

 

A SPOT-6 image was used to detect and map invasive alien wattle. This image has 5 spectral 

bands which image the earth at a 1.5 m spatial resolution for the panchromatic band, and 6 m 

spatial resolution of the multispectral bands. The image was freely available from the South 

African Space Agency (SANSA) on the 25th of May 2019, under cloudless conditions. The SPOT-

6 image consisted of four bands ranging from the visible to near-infrared (NIR) region of the 

electromagnetic spectrum. These bands consist of the blue (0.455-0.525 µm), green (0.530 – 

0.590 µm), red (0.625 – 0.695 µm) and near-infrared (0.760 – 0.890 µm). The image was ortho-

rectified courtesy of SANSA and was radiometrically corrected by converting digital numbers to 

the top of atmosphere reflectance. The image was referenced using the Universal Transverse 

Mercator (UTM zone 36S) projection, which uses the WGS84 Geodetic system. ENVI 5.2 was 

used for preprocessing the SPOT-6 image. 

 

2.3 Reference data 

 

A field campaign was conducted on the 29th of May 2019, four days after the acquisition of the 

SPOT-6 image. A total of 150 random 5 x 5 m plots were generated by the Hawths tool in ArcMap 

10.5 for each of the surrounding land cover classes namely: Built-up, Water, Grass, Agriculture 

and Bare soil. These plots were used to obtain image texture from the SPOT-6 image for each land 

cover class. The location of wattle was achieved using purposive random sampling. A total of one 

hundred and fifty 5 x 5 m plots containing wattle were then used to obtain image texture from the 

SPOT-6 image. 



All sample plots were verified in field using a handheld TrimbleGeoHX6000 Global Positioning 

System (GPS) with sub-meter accuracy. Overall, a total of 900 sample plots were collected in field 

(Table 1). The mean texture values for each of the 900 sample plots were extracted from the SPOT-

6 image using Zonal Statistics in ArcMap 10.5.  

 

Table 1: Sample size of each class surveyed (n = 900) 

 

 

 

 

 

 

 

2.4  Image texture 

 

Image texture is useful for detecting wattle and surrounding land cover classes, as these classes 

have distinct spatial structures, which can be discriminated using the texture of an image. This 

method is divided into the grey-level occurrence matrix (GLOM) and grey-level co-occurrence 

matrix (GLCM) (Lottering et al., 2019). GLOM does not account for the spatial relationships that 

exist between pixels and are computed based on the histogram of pixel intensity within a 

processing window (St-Louis et al., 2006). It consists of five filters to calculate texture, which 

includes; mean, variance, entropy, data range, and skewness. Conversely, a spatial dependent 

matrix of different tones of grey is used in GLCM to compute texture by calculating pairwise 

combinations of grey tones in a processing window (Haralick et al., 1973). It consists of 8 filters 

to calculate texture, namely; contrast, variance, dissimilarity, mean, homogeneity, correlation, 

entropy, and second moment. For a more detailed description of these texture parameters, please 

see Lottering and Mutanga (2012).  

In this study, we only used GLCM combinations, as many studies have found that it was more 

superior than GLOM (Lottering and Mutanga, 2012; Hlatshwayo et al 2019). A co-occurrence 

shift of x = 1, y = 1 and θ = 45° was used to compute texture from the SPOT-6 image. These texture 

parameters were controlled using the 3x3, 5x5 and 7x7 moving windows. This resulted in a total 

of 96 texture parameters computed from the SPOT-6 image, which were subsequently combined 

to form texture combinations. Image texture was computed using ENVI 5.2 software. 

 

2.5 Processing the SPOT-6 image 

 

The SPOT-6 image was processed in three steps: 

Step 1: Single image texture parameters computed from the SPOT-6 image were used to detect 

invasive alien wattle and surrounding land cover classes. 

Step 2: All possible combinations of the eight image texture parameters of any two texture filters 

were used to detect invasive alien wattle and surrounding land cover classes. Each combination 

was exclusive to the spectral band and moving window size. Image texture combinations were 

derived using the following formula: 
𝐵1

𝐵2
…(1) 

  Where B1and B2 are texture parameters 

 

Step3: For comparison purposes, 15 vegetation indices computed from the SPOT-6 image were 

used to detect invasive wattle and surrounding land cover classes. These indices were generally 

dependent on the NIR and red band, as these regions are sensitive to vegetation (Barry et al., 2008).  

 

Class No. of Samples 

Built-up 150 

Water 150 

Grass 150 

Agriculture 150 

Bare soil 150 

Wattle 150 



2.6. Sparse partial least squares discrimination analysis (SPLS-DA) 

 

SPLS-DA was used to determine the relationship between single image texture parameters or 

image texture combinations or vegetation indices with invasive alien wattle and surrounding land 

cover classes. This algorithm is multivariate and has adapted the partial least squares approach (Lê 

Cao et al., 2011), however, it differs by imposing sparsity to the solution. This eliminates 

insignificant variables by imposing an L1 penalty, which assigns variables a score of zero. Also, 

SPLS-DA simultaneously performs variable selection and dimension reduction, which is 

important when dealing with high dimensional and redundant data such as image texture. This 

results in a few non-zero texture parameters that are then used to build latent components that 

show the most important discrimination among the land cover classes. The class association of 

each variable is subsequently coded using the reference cell coding. This assumes that the response 

matrix (Y) is one of the (G + 1) classes that is denoted 0, 1…G, where 0 is the control group. Then, 

the response matrix (Y) that is recorded is defined as n x (G + 1) matrix with the following 

elements: 

𝑦𝑖,(𝑔+1)
∗ = 𝐼(𝑦𝑖 = 𝑔)     (1) 

  Where i = 1, …, n and g = 0, 1, …, G, and where I(A) are indicator functions of an event A.   

 

A classifier is fitted, once the latent components are established (Chung and Keles 2010). 

Selecting a classifier from many classification methods is the final step required by the SPLS-

DA algorithm, which is due to the sample size (n) usually being greater than the number of 

components (K). Therefore, for this purpose, linear classifiers are commonly used (Chung and 

Keles 2010). The SPLS-DA algorithm was run using the “splsda” function (Chun and Keleş 

2010) in R statistical package version 3.1.3 (R Development Core Team 2015). 

 

2.7. Model Optimisation 

 

Using the ten-fold cross-validation method, the number of components were selected for 

successfully running the SPLS-DA model. This was achieved by systematically adding 

components to the SPLS-DA model, then calculating the error. The approach was repeated on the 

training dataset until a point was reached where additional components did not improve the model. 

Furthermore, the SPLS-DA model requires two parameters to be optimized, namely; ‘eta’ and ‘k’. 

The former parameter represents the sparsity threshold that ranges from 0 to 1, while the latter 

parameter represents the number of hidden components. The latent components subsequently 

retain the most significant texture parameters for classification and a zero probability is obtained 

by insignificant texture parameters. After the SPLS-DA model is optimised using the training 

dataset it is then used to classify the test dataset.    

 

2.8. Accuracy Assessment  

 

The dataset (n = 900) was split into 30% test and 70% training. Using a confusion matrix, the 

classification results for the SPLS-DA model were calculated based on the test dataset. This 

process was run at 100 iterations, which accounted for variations in classification accuracies due 

to different test and training datasets (Fassnacht et al., 2014). The error matrix is built of the user 

and producer accuracies, where the user accuracy (UA) determines whether the class on the map 

is also present on the ground. In contrast, the producer accuracy (PA) shows the probability of a 

ground-class being correctly classified on the map during classification (Comber, 2013). The 

overall accuracy (OA) is expressed as a percentage, where it informs the degree of accuracy of the 

various samples and whether they were correctly mapped. Subsequently, the statistical test of the 

kappa coefficient can then be determined to evaluate how well the classification performed. 



 

3. RESULTS 

 

3.1. Optimising the SPLS-DA model 

 

A tenfold cross-validation method was used to determine the components that produced the lowest 

error rate, which was based on the training (n = 630) dataset. The results show that the 7th (eta = 

0.4; k = 7), 7th (eta = 0.3; k = 5) and 9th (eta = 0.2; k = 2) components had the lowest error rate for 

the image texture combination, single image texture and vegetation indices, respectively.  

 

3.2. Classification using the SPLS-DA model 

 

Table 2 provides evidence of the SPOT-6 image being successfully classified using the SPLS-DA 

model to detect invasive alien wattle and surrounding land cover classes using image texture 

combinations, single image texture and vegetation indices. The texture combinations proved 

superior over the single texture and vegetation indices, with an overall accuracy of 74% and a 

kappa statistic of 70. 

 

Table 2: Accuracy assessment for the classification using image texture combinations, single 

image texture and vegetation indices computed from the SPOT-6 image 
SPLS-DA Model Class Name UA (%) PA (%) OA (%) Kappa Statistic 

Texture Combinations Built-up 71 72  

 

74 

 

 

70 
Water 74 75 

Grass 76 79 

Agriculture 73 70 

Bare Soil 80 77 

Wattle 69 67 

Single texture Built-up 68 70  

 

68 

 

 

65 
Water 62 68 

Grass 70 69 

Agriculture 69 71 

Bare Soil 73 70 

Wattle 62 59 

Vegetation Indices Built-up 63 66  

 

62 

 

 

59 
Water 58 55 

Grass 64 60 

Agriculture 66 68 

Bare Soil 65 69 

Wattle 55 58 

 

Furthermore, the change in overall classification accuracy produced by the SPLS-DA image 

texture combination, single image texture and vegetation indices models when running each model 

at 100 iterations for dividing the training and test datasets. The mean overall classification accuracy 

was 72% with a standard deviation of 2.15%, a mean overall classification accuracy of 65% with 

a standard deviation of 2.27% and a mean overall classification accuracy of 60% with a standard 

deviation of 3.04% for the SPLS-DA image texture combination, single image texture and 

vegetation indices models, respectively. 

 

3.3. Frequency of significant variables simultaneously selected by the SPLS-DA model 

 

The SPLS-DA image texture combination model yielded the highest overall classification 

accuracy and simultaneously selected a total of 35 significant variables. Figure 2 a. shows that 

correlation, second moment and homogeneity were the most frequent texture filters used to 



develop texture combinations and Figure 2 b. shows that these texture combinations were 

generally computed from the NIR and red bands of the SPOT-6 image. Thus, containing the 

majority of the invasive alien wattle and surrounding land cover class information. In addition, 

Figure 2 c. shows that the 5 × 5 moving window dominated the development of the SPLS-DA 

model. 

 

  

 
Figure 2: Frequency of selected a. Image texture parameters, b. SPOT-6 bands and c. Window 

size using the SPLS-DA algorithm 

 

3.4. Mapping the spatial distribution of invasive alien wattle using SPLS-DA  

 

A predictive map displaying the distribution of invasive alien wattle was subsequently developed, 

using the image texture combination model, as it yielded the highest overall accuracy. Since 

invasive wattle was the main focus of the study, we only displayed wattle distribution in the 

predictive map. This map was developed using the R statistical package version 3.1.3 (R 

Development Core Team 2015). Figure 3 represents the spatial distribution of invasive alien wattle 

over the study area.  
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Figure 3: Spatial distribution of wattle in the low-lying Midlands area of KwaZulu-Natal 

 

 

4. DISCUSSION 

 

In this study, we investigated the ability of image texture combinations to detect invasive alien wattle 

and surrounding land cover classes. The results showed that the SPLS-DA model integrated with 

image texture combinations (OA = 74%; kappa statistic = 70) outperformed both SPLS-DA models 

integrated with single image texture bands (OA = 68%; kappa statistic = 65) and vegetation indices 

(OA = 62%; kappa statistic = 59). This could be due to two factors; firstly, image texture simplifies 

the structure of the invasive wattle and surrounding landcover classes and secondly, image texture 

band combinations may reduce background, sun angle and sensor angle effects (Nichol and Sarker, 

2010), which may have improved the classification.  

The SPLS-DA model integrated with image texture combinations generally selected ratios that were 

made up of correlation, second moment and homogeneity. According to Wood et al (2012), GLCM 

parameters such as correlation characterize horizontal vegetation structure. As a result, the horizontal 

growth of matured invasive wattle increased the frequency of correlation in the development of the 

texture combination model. In a separate study, Song et al (2015) found that homogeneity and second 

moment played a significant role in mapping forest cover change. The superior performance of these 

texture parameters was also identified in previous studies that examined vegetation within a remotely 

sensed scene, where these texture parameters contained most of the structural information 

(Hlatshwayo et al., 2019 and Lottering et al., 2019). Additionally, Zakeri et al. (2017) found that the 

addition of image texture improved land cover classification using polarimetric synthetic aperture 

radar imagery.  

Image texture combinations were typically derived from the red and NIR bands of the SPOT-6 image. 



These bands contain structurally relevant information, therefore played a significant role in detecting 

and mapping the spatial structure of invasive wattle and surrounding land cover classes. Equally, 

Lottering et al. (2019) found that image texture combinations derived from the NIR and red bands 

proved useful for detecting and mapping vegetation defoliation. In addition, the SPLS-DA model 

also predominantly selected the 5x5 moving window to detect and map invasive alien wattle. Small 

moving windows, such as 3×3, tend to exaggerate the differences within a particular window, which 

increases the noise content in the texture image (Chen et al., 2004). Larger moving windows, such 

as the 7×7, use more processing time and may result in eroding class boundaries (Jobanputra and 

Clausi, 2006). 

The predictive map shows a relatively consistent distribution of wattle over the entire study area; 

however, wattle was prominent in small pockets in the northern border region and the central region. 

The northern area is characterised by open and bare spaces, which has resulted in dispersed wattle 

seeds invading these areas and proliferating. Furthermore, the dense presence of wattle in the central 

pocket is found adjacent and within a forested area. Lottering and Mutanga (2012) stated that IAPs 

occurs along forest margins such as access routes, which create pathways that allow for further 

invasion and spreading of IAPs into the forest regions. Additionally, alien invasive wattle was 

detected along riparian zones within the study area, more specifically in adjacent areas to the dam 

found in the study region. Poona (2008) and Witt (2005) stated that wattle has the characteristic of 

growing close to water sources due to its high water intake.  

 

5. CONCLUSION 

 

This study aimed to investigate the potential use of image texture combinations to effectively detect 

and map invasive alien wattle. The following conclusions were drawn: 

 The image texture combination model was more effective in detecting alien invasive wattle 

and surrounding land cover classes, yielding the highest overall accuracy when compared to 

the single image texture model and vegetation indices.  

 The distribution of invasive alien wattle over the low-lying Midlands study area was 

successfully mapped using the SPLS-DA model of image texture combinations, where alien 

invasive wattle occurred consistently over the entire study area. 

Overall, this study was the first to use image texture combinations to detect and map invasive alien 

wattle. The results obtained are valuable in understanding the spatial distribution of alien invasive 

wattle in KZN, which may assist in effective resource management and eradication programmes. 
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