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ABSTRACT: Monitoring the real-time atmospheric PM2.5, temperature and humidity profiles is 
highly valuable for human health and climate research. To achieve this goal, we applied two new 
advanced deep learning models. One is EntityDenseNet to estimate real-time ground-level PM2.5 
from Himawari-8 satellite data, and the other is called batch normalization and robust neural 
network (BRNN) to retrieve temperature and humidity profiles using data from a ground-based 
microwave radiometer (MWR). Many features and technologies have been introduced in these two 
models, in particular: (1) a dropout layer for each hidden layer in the deep learning model has been 
introduced to reduce the overfitting problem; (2) the problems of saturation and vanishing 
gradients are overcome by using the ReLU as the activation function; and (3) the data between the 
inputs in model are normalized by batch normalization technology, which fixes the mean and 
variance of the inputs to accelerate the training process. A detailed comparison with various 
traditional machine learning models (backpropagation neural network, extreme gradient boosting, 
light gradient boosting machine, and random forest) has been conducted in this research, using the 
same training and test data sets. From the comparison, the new models reduce overfitting and has 
a greater capacity to describe nonlinear relationships. In addition, the EntityDenseNet can “peek 
inside the black box” to extract the spatio-temporal features of data. The EntityDenseNet is able 
to map variables that are close to each other to an embedding space. It enables us to calculate the 
distance between different variables in this space. The smaller the distance, the higher the 
correlation between two features could be found. This ability greatly improves interpretability of 
the deep learning model inversion result. This work reveals that these two advanced deep learning 
models significantly improves retrieval accuracy, and demonstrates strong potential in the 
application of EntityDenseNet and BRNN for additional earth-observation datasets and scenarios. 
We have created an EntityDenseNet Cloud Platform (http://49.233.1.40:8888/), it is free to access 
and researchers can use it for their own data modelling. 

 

1. INTRODUCTION 

Monitoring the real-time atmospheric PM2.5, temperature and humidity profiles is highly valuable 

for understanding earth environmental changing. In recent years, machine learning methods have 

increased in popularity as a method for estimating PM2.5, temperature and humidity profiles using 

remote sensing data, such as satellite data and microwave radiometer (MWR). 

 

Machine learning methods can offer the best performance for the solution of nonlinear relationships 

in the model. Even now, the three-layer backpropagation neural network (BPNN) is a very popular 

method for satellite and MWR data, to retrieve PM2.5 and atmospheric vertical profiles (Che et al., 

2019; Mao et al., 2017). However, these BPNN models have only a single hidden layer and their 

capacity to model highly varying functions defining nonlinear structures is much less than using 
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multiple hidden layers (deep learning model). In addition, the BPNN approach cannot directly use 

categorical data (Guo and Berkhahn, 2016). The neural network requires all input variables and 

output variables to be numeric (Yan et al., 2015), thus, the One-Hot encoding is typically used for 

converting the categorical variable which is then input into neural network training and prediction 

(Chren, 1998; Liu et al., 2002). Therefore, as deep learning is usually a neural network-based model, 

one of the key issues to overcome was determining how to handle and learn the information using 

categorical variables. Furthermore, interpreting the prediction from deep learning neural networks 

also remains challenging. Although Reichstein et al. (2019) indicated that deep machine learning 

models may act as a promising tool to extract spatial–temporal features from the data, the processes 

required to open and interpret this “black box” model are difficult. 

 

In this study, we applied two advanced deep learning models to retrieve real-time PM2.5 and 

atmospheric vertical profiles from Himawari-8 satellite data and MWR data. In contrast to the 

traditional machine learning methods, these advanced deep learning models reduce overfitting and 

has a greater capacity to describe nonlinear relationships for these remote sensing data. 

 

2. DATA AND METHODS 

2.1 MWR and radiosonde data 
 

In this article, the data were measured by an MWR located in the Beijing Nanjiao Meteorological 

Observatory, China. The MWR used in this research was the Humidity And Temperature PROfiler 

(HATPRO; Radiometer Physics GmbH, Germany). The radiosonde data were measured by an L-

band GTS1 digital radiosonde at the same location; the radiosonde was launched twice a day, at 

11:15 and 23:15 UTC during the research period. The collected MWR and radiosonde data from 

2017 to 2018 were used in the training process and the data from January to May 2019 were applied 

for validation. 
 

2.2 Himawari-8 satellite data and ground-based PM2.5 
 

The Himarwari-8 reflectance (Bands 1 to 6) and brightness temperature (Bands 7 to 16) data of a 

spatial resolution of 5 km were extracted from the L1 Gridded Data at 10 min intervals during 

daytime (UTC 1:00–6:00) from January 2016 to June 2019. Hourly PM2.5 concentrations were 

collected for the same period from 1434 monitoring stations across mainland China. 

 

2.3 Batch normalization and robust neural network (BRNN) 

 

In this research, we applied BRNN (Yan et al., 2020a) to retrieve temperature and humidity profiles 

using data from a ground-based MWR. The BRNN consists of four layers (see Figure 1): one input 

layer, two hidden layers, and one output layer. The input layer receives the collected data including 

the brightness temperature data from the RPG-HATPRO’s 14 channels and three features are the 

surface pressure, temperature, and RH measured by the RPG-HATPRO. In BRNN, each of the two 

hidden layers includes one fully connected layer, one rectified linear unit (ReLU) layer, one BN 

layer, and one dropout layer. In the fully connected layer, the number of neurons is 256. In the 

output layer, the input data will first be processed by a fully connected layer and a sigmoid layer. 

We introduce the sigmoid layer to scale the output to a reasonable range in both training and 

prediction processes. For example, the normal range of the RH is 0%–100%. The collected MWR 

and radiosonde data from 2017 to 2018 were used in the training process and the data from January 

to May 2019 were applied for validation. 

 

 

 



 

2.4 EntityDenseNet 
 

EntityDenseNet (Yan et al., 2020b) was used to estimate real-time ground-level PM2.5 from 

Himawari-8 satellite data. The schematic diagram of the EntityDenseNet is shown in Figure 1, 

which is the same as BRNN when the input variables are only continuous type. However, the 

EntityDenseNet can directly process categorical variables and continuous variables. To process the 

categorical variables, we used the Entity Embeddings method (Guo and Berkhahn, 2016). In Figure 

2, we use the categorical variable “January” as an example to show how the embedding layer works 

in this EntityDenseNet model. The input data is first separated into two data types: categorical 

variables and continuous variables. The categorical variables include year, month, date, hour, China 

administrative divisions and day type (weekday or holiday). The continuous variables consist of 

TOA reflectance from Himawari-8 bands 1 to 6, brightness temperature data from Himawari-8 

bands 7 to 16, satellite zenith angle (SEZ), solar zenith angle (SOZ), satellite azimuthal angle (SEA), 

solar azimuthal angle (SOA), relative azimuth angle, scattering angle, longitude, latitude, light 

density, Digital Elevation Model (DEM), and Normalized Vegetation Index (NDVI). The main 

purpose of EntityDenseNet is to establish the nonlinear relationship between satellite spectral 

measurements and PM2.5 concentration. The integrated training data collected from ground-based 

PM2.5 and satellite data are for the period from 2016 to 2018, which contains 4,490,474 samples. 

The collected data from 2019 (437,351 samples) was used to test the trained network system. 

 

 

 
Figure 1. Schematic diagram of the BRNN and EntityDenseNet 

 

 



 

 
Figure 2. The diagram of the categorical variable “January” appended to the continuous variables 

for the EntityDenseNet training and prediction. 

 

3. RESULTS 

3.1 Validation of temperature and humidity profiles with Radiosonde 
 

Figure 3(a)–(c) shows the BRNN temperature, water vapor density (WVD), and RH as a function 

of the radiosonde measurements from all 47 atmospheric vertical layers up to 10 km. High kernel 

density values with red color show where most of the data lie. As shown in Figure 3(a), the linear 

regression relation between the BRNN temperature and radiosonde temperature has a slope of 0.98 

and a y-intercept of 6.5, with a coefficient of determination (R2) of 0.99 and a root-mean-square 

error (RMSE) of 1.70. For WVD [see Figure 3(b)], the R2 is 0.90 and the slope is 0.9 with an RMSE 

of 0.26. From Figure 3(a) and (b), we observe that the temperature and WVD from BRNN agree 

well with the radiosonde measurements. In contrast to the temperature and WVD validation, the 

result of RH is more scattered. Figure 3(c) shows that the R2 is 0.44 and the RMSE is 11.72. 

 

 

 
Figure 3. (a)–(c) BRNN retrievals for temperature, WVD, and RH, respectively, as a function of 

radiosonde data 



 

3.2 Comparison of BRNN with Other Retrieval Techniques 
 

We plot the RMSE of the temperature, RH, and WVD profiles resulting from BRNN, XGBoost, 

BPNN, and SVM at different heights, using the radiosonde observation as the reference. For the 

temperature, using the BRNN method, the RMSE below 2 km is around 1 K and remains less than 

2 K below 8 km; this is apparently less than the RMSE of XGBoost, BPNN, and SVM. The 

XGBoost method has a better accuracy than SVM and BPNN below 2 km, but has a large RMSE 

in the upper atmosphere (above 3.5 km). For RH, the RMSE of BRNN can be controlled at about 

5% below 1 km. The XGBoost method also performs well in the lower atmosphere, but its RMSE 

is significantly larger than the others from 3 to 7 km. In terms of WVD, the situation is exactly the 

opposite: the RMSE of the lower layers is larger and that of the higher layers is smaller. The 

superiority of the BRNN method is that its RMSE value does not exceed 0.4 g/m3 from the surface 

to 10 km; in particular, its RMSE is about 0.35 g/m3 from the surface up to 3.5 km and then 

decreases to below 0.1 g/m3 at 8 km. Among the remaining three methods, the performance shows 

little variation, except for the SVM method, which has the largest error in the layer near the ground. 

 

 

 
Figure 4. Profile retrieval RMSEs for (Left) temperature, (Center) RH, and (Right) WVD, with 

respect to radiosonde, for BRNN, XGBoost, BPNN, and SVM techniques 

 

 

 



 

3.3 EntityDenseNet performance 
 

Figure 4 consist of scatterplots depicting the relationship between measured and estimated PM2.5 

for both training and test data sets. It should be noted that extremely high values were not eliminated 

from all the datasets to enable us to test the performance of the EntityDenseNet model in the 

presence of abnormal values. In our validation of the hourly test data, the linear regression between 

the EntityDenseNet PM2.5 and ground-based PM2.5 resulted in a slope of 0.56, a y-intercept of 19.45, 

a coefficient of determination (R2) of 0.63, and an RMSE of 26.85 μg/m3. As shown in Figure 4, a 

small change in R2/RMSE between training (R2=0.68, RMSE=24.05 μg/m3) and hourly test data 

sets indicates a slight over-fitting in the EntityDenseNet model. 

 

 
Figure 5. Scatterplot showing the performance of EntityDenseNet on trained (2016–2018) and test 

(2019) data sets 

 

 

Figure 12 presents three cases of the application of EntityDenseNet, including true color maps (left), 

real local time (13:00) (middle), and daily averaged (right) PM2.5 distributions in mainland China on 

April 15–17, 2019. The true color maps show the satellite image in this period including the real 

cloud covering over China. In cloud-free regions, the PM2.5 spatial distributions as well as their 

temporal variations are well-retrieved. Northern China also showed high concentrations of PM2.5 

during the same period. Another hotspot of high PM2.5 concentrations is Yunnan, where PM2.5 

concentrations can reach up to 45~55 μg/m3. Figure 12 confirms that EntityDenseNet can retrieve 

PM2.5 data for a specific local time or daily temporal resolution covering a large spatial scale. 

 



 

 
Figure 6. EntityDenseNet PM2.5 over mainland China on April 15 –17, 2019. The left column is the 

true color satellite image. The middle column is the PM2.5 concentrations at 13:00 (local time). The 

right column is the daily averaged PM2.5 concentrations. 

 

 

3.4 Spatial features extraction by EntityDenseNet 
 

The spatial characteristics of PM2.5 between different provinces of China extracted by 

EntityDenseNet is displayed in Figure 7. The province features matrix from the trained 

EntityDenseNet embedding layer is mapped to 3D (Figure 7a). The Cosine Distance between 

different provinces was calculated based upon Figure 7a. In the Beijing-Tianjin-Hebei region, Tianjin 

had a closer Cosine Distance with Hebei (0.26) than with Beijing (0.45). This result illustrates that 

the PM2.5 in Tianjin was influenced more by the PM2.5 from Hebei than Beijing (Figure 7a,b). This 

result is consistent with the WRF-Chem modeling outcome which demonstrated that PM2.5 from 

Hebei had a greater contribution to Tianjin’s PM2.5 than Beijing’s (Meng et al., 2020). Xue et al. 

(2014) also indicated that the contribution of Hebei to the PM2.5 of Tianjin is 26%, while its 

contribution to Beijing is 24%. In Jiangxi, China, a closer correlation with the PM2.5 from Hunan 

(Cosine Distance=0.51) than the Hubei’s PM2.5 (Cosine Distance=0.54) or other neighboring 

provinces (Cosine distance >0.6) was identified. According to source apportionment of the PM2.5 in 

Jiangxi, other provinces contributed approximately 48% of PM2.5 annually (Xue et al., 2014). In the 

present study, EntityDenseNet further indicated that the Jiangxi PM2.5 was most closely associated 

with Hunan. Using Figure 7, we can then extract the spatial information from the training data. 

Overall, EntityDenseNet improves the understanding of the impact of PM2.5 pollution on the 

provincial scale. 

 



 

 

 
Figure 7. Spatial analysis from EntityDenseNet. a) The province features matrix from the trained 

EntityDenseNet embedding layer is mapped to 3D. b) The Cosine Distance to Tianjin, China. c) 

The Cosine Distance to Jiangxi, China. 

 

 

4. DISCUSSION AND CONCLUSION 
 

BRNN and EntityDenseNet, these two advanced deep learning models have introduced many 

features and technologies that improve the capacity to describe the nonlinear relationship for remote 

sensing data. In particular: (1) a dropout layer (Srivastava et al., 2014) for each hidden layer in the 

EntityDenseNet has been introduced to reduce the overfitting problem; (2) the problems of saturation 

and vanishing gradients are overcome by using the ReLU as the activation function (Nair and Hinton, 

2010); and (3) the data between the inputs are normalized by BN technology (Ioffe and Szegedy, 

2015), which fixes the mean and variance of the inputs to accelerate the training process. 

 

In the application, BRNN showed a good retrieval capability with an RMSE of 1.70 K for temperature, 

11.72% for RH, and 0.256 g/m3 for WVD. And the results obtained by EntityDenseNet reflected a 

good retrieval capability at hourly time scales with RMSE values of 26.85 μg/m3. The spatial features 

of PM2.5 interpreted by EntityDenseNet demonstrates that in the Beijing-TianjinHebei area, the PM2.5 

in Tianjin is more subject to impacts from Hebei than Beijing, which is consistent with previous 

studies (Meng et al., 2020; Xue et al., 2014). This relationship was further explored using the deep 

learning approach in the present study. This work reveals that these two advanced deep learning 

models significantly improves retrieval accuracy, and demonstrates strong potential in the application 

of EntityDenseNet and BRNN for additional earth-observation datasets and scenarios. We have 

created an EntityDenseNet Cloud Platform (http://49.233.1.40:8888/), it is free to access and 

researchers can use it for their own data modelling. 
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