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ABSTRACT: Surface solar radiation (SSR) is essential for calculating surface 

radiation budget and is a key parameter for climate change research. Accurate cloud 

optical properties are the important input parameters for calculating SSR for cloudy 

sky. In this study, a look-up table (LUT) method is developed to retrieve cloud optical 

properties (cloud phase, cloud optical thickness, cloud effective radius) from the 

Advanced Himawari Imager (AHI) instrument onboard the Himawari -8, a new 

generation geostationary meteorological satellite. Then, SSR is estimated from cloud 

optical properties and other auxiliary data (aerosol optical thickness, surface albedo, 

precipitable water vapor) by LUT method. Furthermore, to accelerate the calculation 

speed without loss accuracy, deep neural network (DNN) method is used to estimate 

SSR by learning input parameters (aerosol, cloud optical properties and other auxiliary 

data) and SSR simulated by RSTAR radiative transfer model. The estimated SSR for 

2016 is validated at 122 radiation stations from several radiation networks located in 

the full disk regions of Himawari-8 data, with an RMSE of 112.14 Wm -2 for 

instantaneous SSR, 96.91 Wm -2 for hourly SSR, 29.30 Wm -2 for daily SSR, as well as 

an MBE of about 10 Wm -2. Compared with the SSR estimated from conventional 

geostationary satellites, the accuracy of the SSR proposed by this study is significantly 

improved. 

 

 

1. Introduction 

Surface shortwave radiation (SSR), which is commonly referred to as the amount of shortwave 

(0.3-3.0μm) regions of solar energy relative to a horizontal surface, is the prime determinant of energy 

exchange between land, ocean and atmosphere (Houborg et al. 2007; Wild 2009). SSR is required by 

land surface models, hydrological models and ecological models in simulating land-atmosphere 

interactions. Accurate observation and estimation of SSR is essential for climate change research and 

forecasting. 

Thus far, both polar-orbiting and geostationary satellite data can be used to estimate SSR over 

a wide range of regions. Polar-orbiting satellites such as Terra/MODIS, Aqua/MODIS, and 

NPP/VIIRS can provide both high spatial and spectral resolution measurements of targets (Platnick 

et al. 2015; Platnick et al. 2017), and can produce SSR estimates with high spatial resolution, but 

they cannot provide the diurnal variation of the SSR due to their low temporal resolution. In recent 

years, new-generation geostationary satellites, such as Himawari-8, GOES-R and FY-4, which have 

greatly improved in spatial, spectral and temporal resolutions, have provided new opportunities to 

access the SSR. Moreover, the amount of data generated by the new-generation geostationary 

satellites, such as Himawari-8, is large; consequently, a fast algorithm is required to process the data. 

For these large data, the numerous methods developed to estimate SSR from satellite data can be 

divided into three categories: empirical, physical and hybrid. To provide SSR estimates with both 

high accuracy and high speed, the hybrid methods have appeared. Takenaka et al. (2011) developed 



a novel method that used an artificial neural network (ANN) to approximate the radiative transfer 

model to estimate SSR using inputs of retrieved cloud properties from the geostationary satellite 

MTSAT. However, this algorithm lacked consideration of the aerosol influences on SSR, and the 

spatial and spectral resolution limitations of the MTSAT sensors made it difficult to obtain high-

accuracy SSR estimates, especially in heavy aerosol regions. 

As mentioned above, hybrid methods are a good way to form a balance between accuracy and 

calculation speed during SSR estimation, especially for geostationary satellites, which produce data 

at high frequency. In this study, a hybrid method (DNN-based) was developed to estimate solar 

radiation from Himawari-8 data with both high accuracy and at high speed by training a deep network 

using the output data of the RSTAR RTM (Nakajima and Tanaka 1986, 1988; Sekiguchi and 

Nakajima 2008), which is a general package for simulating radiation fields in the atmosphere-land-

ocean system. This method includes two steps. The first step is to train the DNN models (clear sky 

and cloudy sky) by simulating SSR with RSTAR under many different solar, atmosphere and surface 

conditions. The second step is to estimate SSR using the trained DNN models based on input from 

Himawari-8 L2 atmospheric (aerosol and cloud) products and other auxiliary data (i.e., MODIS 

surface albedo and ERA 5 water vapor data). 

 

2. Data and Methods 

2.1.  Data 

Two types of data are used to estimate SSR. The first type is Himawari-8 data, including the L1 

product and L2 aerosol product (AOT). L1 data were used to retrieve cloud properties including cloud 

phase, cloud optical thickness (COT) and cloud effective radius (CER) (Letu et al. 2016; Letu et al. 

2019; Letu et al. 2020). The other type is auxiliary data, including the MODIS surface albedo product 

and ERA5 reanalysis data. The MCD43C3 (V006) surface albedo product derived from the 

combination of Terra and Aqua was used in this study. The MCD43C3 surface albedo product has a 

spatial resolution of 5 km and a 16-day periodic temporal resolution. To simplify the input of the 

solar radiation estimation from space, the monthly mean surface albedo is calculated based on the 

MCD43C3 16-day data. 

To validate the estimated solar radiation from the Himawari-8 satellite, a total of 118 in-situ 

radiation stations from 4 networks located in Himawari-8 full-disk regions were used: 9 sites from 

the Australian Governments Bureau of Meteorology (BOM), 4 sites from the Baseline Surface 

Radiation Network (BSRN), 16 sites from the Global Moored Buoy Array (GTMBA) and 89 sites 

from the China Meteorological Administration (CMA). The BSRN, which was initiated by the World 

Climate Research Programme, aims to provide validation data with high accuracy at 1-min intervals. 

The measurement errors were about 5 Wm-2 for global solar radiation. The quality of BOM should 

be comparable with BSRN, because some of BOM sites are also part of BSRN. The quality of CMA 

may include erroneous and questionable values. Therefore, quality control tests were performed by 

a quality-assured scheme (Peng et al. 2020; Tang et al. 2010). As for GTMBA, data quality control 

is officially performed through a series of procedures on a daily and weekly basis (Yu et al. 2019). 

These stations, except for the CMA, provide high frequency SSR measurements of between 1-3 min, 

while the CMA provides hourly mean SSR measurements. Fig. 1 shows the spatial distribution of 

these 118 radiation stations. These sites from different networks located in the full-disk regions of 

Himawari-8 are representative for SSR validation. All the in-situ data with high quality were used in 

the study when there were quality flags in the files. Non-quality flagged data were checked manually, 

and low-quality data were omitted. 



 
Fig. 1. Spatial distribution of radiation stations from 4 networks (BOM, BSRN, CMA, GTMBA) 

used to validate the performance of the estimated SSR. Different symbols represent different 

networks. 

2.2.  Solar radiation estimation algorithm 

Fig. 2 shows the flowchart of solar radiation estimation with the Himawari-8 atmospheric 

products. First, DNN models for clear sky, cloudy sky (water and ice cloud) were generated by 

training using the output data of the atmospheric transfer model (RSTAR). During the training 

process, some methods were used to improve the performance of the DNN, such as the preprocessing 

by the z-score method and the new scaled exponential linear unit (SELU) activation function [42]. 

Second, solar radiation for clear and cloudy sky conditions were estimated by inputting the 

Himawari-8 L1 and L2 atmospheric products (aerosol and cloud products) along with other auxiliary 

data, such as the MODIS surface albedo and ERA5 PWV data. Third, validation of the estimated 

SSR was performed using data from a total of 118 in-situ radiation stations from 4 networks. 

 
Fig. 2. Flowchart of solar radiation estimation using the Himawari-8 (H8) atmospheric products. 

 

In this study, a five-layer neural network is proposed to estimate solar radiation from Himawari-

8 satellite data. The structure of the neural network is shown in Fig. 3. The input layer of DNN accepts 

seven input parameters: solar zenith angle (SZA), aerosol optical thickness (AOT), precipitable water 

vapor (PWV), cloud phase (CP), cloud optical thickness (COT), cloud effective radius (CER), and 

surface albedo (Ag). There are three hidden layers that contain 256, 128 and 64 neurons, respectively. 

The output layer outputs 12 parameters: shortwave radiation (SW), photosynthetically active 

radiation (PAR), UVA, and UVB, direct and diffuse components at the surface, and the upward 

radiation at the TOA. To make the DNN more robust, several optimization methods were used, like 



normalize input data, using more flexible activation function, and optimizer. Detailed descriptions 

please refer to the reference (Ma et al. 2020). 

 

3. Results 

Fig. 3 shows the comparison results of the instantaneous SSR derived from Himawari-8 and 

ground measurements from a total of 29 stations from 3 networks (BOM, BSRN, and GTMBA) for 

2016. The CMA stations, which do not provide instantaneous SSR measurements, are not shown. 

Overall, the SSR derived from Himawari-8 agrees well with the 29 ground measurements; the MBE, 

RMSE and R2 are 8.1 Wm-2, 125.9 Wm-2 and 0.84, respectively. The N in Fig. 8 indicates the number 

of samples used to evaluate the performance of the estimated SSR. For all 3 networks, the estimated 

SSR is slightly overestimated compared with the ground measurements, with MBEs ranging from 

6.6 to 11.0 Wm-2. The RMSEs for these 3 networks range from 117.4 to 133.0 Wm-2, and the R2 

values for these 3 networks range from 0.83 to 0.85. 

 
Fig. 3. Comparisons of estimated instantaneous SSR from 3 networks for 2016.  

 

Fig. 4 shows the hourly SSR validation results at a total of 118 stations from 4 networks. In 

theory, Himawari-8 captures 6 images each hour because its temporal resolution is 10 min. Here, the 

estimated SSR data greater than or equal to 5 are used to calculate the hourly SSR. The estimated 

hourly SSR has an overall positive MBE value of 27.6 Wm-2, an RMSE of 105.4 Wm-2 and an R2 of 

0.87. The MBEs for each network range from 7.3 to 28.6 Wm-2, the RMSEs vary from 79.2 to 106.4 

Wm-2, and the R2 values range from 0.87 to 0.92. Note that the hourly RMSE and R2 values are 

improved for the hourly validation scale compared to the instantaneous results. 

 
Fig. 4. Comparisons of estimated hourly SSR for 4 networks in 2016.  

Fig. 5 presents the validation results of estimated daily SSR against ground SSR measurements. 



The estimated daily SSR has an overall positive MBE value of 12.3 Wm-2, an RMSE of 31.9 Wm-2 

and an R2 of 0.89. The MBEs for each network range from 1.4 to 15.1 Wm-2, the RMSEs vary from 

23.8 to 33.3 Wm-2, and the R2 values range from 0.89 to 0.92. The daily RMSE of 33.3 Wm-2 

estimated by this study at the CMA stations is comparable to the results of Tang et al. (2016), who 

combined geostationary satellite measurements from MTSAT and MODIS atmospheric products to 

estimate SSR at CMA stations over China with an RMSE of 34.2 Wm-2. 

 
Fig. 5. Comparisons of estimated daily SSR with 4 networks for 2016.  

 

4. Conclusion 

This study developed a hybrid method (DNN-based) to estimate solar radiation from Himawari-

8 L2 atmospheric products. The DNN models used in this study are trained by the output of a radiative 

transfer model (RSTAR); thus, the DNN traces back to the radiative transfer calculation. The 

estimated SSR were validated using 4 networks in the full-disk regions of Himawari-8 and obtained 

an RMSE of 125.9 Wm-2 for instantaneous SSR, 105.4 Wm-2 for hourly SSR, 31.9 Wm-2 for daily 

SSR, and MBE scores of 8.1, 27.6 and 12.3 Wm-2, respectively. Compared with the traditional lookup 

table (LUT) method for estimating solar radiation, the DNN-based method developed in this study 

for estimating solar radiation from Himawari-8 L2 atmospheric products not only provides SSR 

results with high accuracy but also performs at high speed, making it suitable for use in near-real 

time solar radiation estimation applications. However, some aspects of this study could be improved 

in future works. First, this study used 1D RTM for the SSR estimation and neglected 3D cloud effects. 

Second, more complicated aerosol microphysical and optical properties (single-scattering albedo, 

asymmetry factor) could be replaced by instantaneous data rather than fixed values. Last, surface 

elevation changes (0 m is assumed) are not considered in the current algorithm because that would 

increase the size of the training data by several fold, which would make the DNN models hard to 

train. In our future work, we will not only consider the altitude, but also other parameters like ozone 

amount, single scattering albedo and asymmetry factor of aerosol, etc., to get a better DNN models 

to approximate radiative transfer calculation.  
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