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Abstract: Prediction of species’ potential habitat distribution has become a major research issue 

in applied ecology.  To obtain accurate predictive results, it is necessary to scrutinize ecological 

factors in a predictive habitat model.  This study aimed to assess whether the tolerance limits of 

different tree species would affect the accuracy of models for predicting their potential habitat.  

Long-leaf chinkapins (LCC) grow widely over mountainous areas in central Taiwan, but there is 

a minimum tolerance limit in elevation above which this species can only grow over there, and 

furthermore the species usually occurs on the flat and broad ridges for sufficient sunlight.  By 

contrast, Japanese Elaeocarpus (JE), which has no limits of tolerance on any ecological trait, can 

grow widely in mountainous areas from low to medium elevation. Hence, JE species has a 

scattered distribution. The study attempted to predict the potential habitat of LCC and JE species 

in the Huisun Experimental Forest Station (HEFS) in central Taiwan.  It used geospatial 

information system (GIS) to integrate the datasets for two species and environmental factors, 

including elevation, slope, aspect, terrain position, and surface curvature (SC), profile curvature 

(PRC), plan curvature (PLC), and global solar radiation (GSR).  DEMs of three grid sizes (5, 

20, and 40 m) were used to derive these terrain-related variables. The models incorporating 

these terrain-related variables were developed using decision tree (DT), random forest (RF), 

maximum entropy (MAXENT), and discriminant analysis (DA) to predict their potential 

habitats.  The results show that the kappa values of RF, DT and MAXENT models with LCC  

are greater than that of DA, and the same results are with JE.  More importantly, the accuracies 

of the four SDMs with LCC are much better than those with JE.  It means that LCC has a 

minimum tolerance limit on elevation (i.e. 1,700 m), which plays a key role on the spatial 

distribution of LCC, thereby substantially raising the accuracy of predictive habitat models.  

The opposite is true for widespread, disperse species like JE, which does not have any particular 

mailto:njl@nchu.edu.tw


trait with small ecological amplitude.  In addition, LCC trees usually prefer to occur in wide 

ridges with gentle slope for enough sunlight, and thus terrain position and slope are also 

important variables for predictive habitat models.  The point may explain why the prediction of 

the species with a small ecological amplitude in a certain factor or some factors is much easier 

and more accurate than that of widespread species.  To improve the accuracy of predictive 

models for a widespread species like JE, the follow-up study will attempt to use DEM with high 

spatial resolution (1m) derived from LiDAR to generate terrain-related variables. 

 

1.  INTRODUCTION 

 

Species distribution model (SDM) is a useful tool for evaluating potential species distribution 

(de Oliveira et al., 2020). Recently, there are plenty of new powerful statistical techniques and 

GIS tools, causing the development of SDM rapidly increased in ecology (Guisan and 

Zimmermann, 2000).  Choosing the fittest modeling method and variables to increase the 

accuracy of prediction becomes more and more important. 

 

Ecological amplitude (EA) is the capability of a species to establish in various habitat lying 

along an environmental gradient (Varghese and Menon, 1999).  By determining the range of 

conditions under which it persists in nature, the EA of a species may be most effectively 

established (Packham and Willis, 1976).  Every tree species has different EAs, if one can find 

out the main factors that affect species and the limits of tolerance of tree species, it will be 

helpful for modeling potential habitat distribution. 

 

Castanopsis carlesii (long-leaf chinkapins, LCC) is native to Hainan, Guangdong, Guangxi, 

Fujian and Taiwan (Lu et al., 2017).  It is widely distributed in the mountainous area of central 

Taiwan with an altitude of about 1700–2100 m.  LCC is an intolerant species, mostly 

distributed on wide flat ridges and on the platforms on both sides of the ridges.  It is difficult to 

find this species from mountainside to valleys because these places are usually dark and humid.  

Even if it appears, its tree shape is far inferior to those growing on the ridge (Lo et al.,2008).  

Elaeocarpus japonicus (Japanese Elaeocarpus, JE) is distributed in forests from low-elevation to 

up to 2,000 meters across the Taiwan island. It is often mixed in broad-leaved forests in a 

scattered state. Lo (1992) found out that JE species is frequently distributed in shallow soil, 

direct sunlight and dry places.   

 

The purpose of our research is to confirm whether the limits of tolerance of the species affect the 

accuracy of the model through establishing and comparing the species distribution models of 

LCC and JE.  The research used digital elevation model (DEM) in three grid sizes (5, 20, and 

40 m), which were acquired from the Satellite Survey Center, Dept of Land Administration, 

M.O.I.  By using GIS software package,  it generated the data layers for environmental factors, 



including elevation, slope, aspect, terrain position (TP), surface curvature (SC), profile curvature 

(PRC), plan curvature (PLC), and global solar radiation (GSR) from DEM.  Four models, 

decision tree (DT), random forest (RF), MAXENT, and discriminant analysis (DA), were 

developed to predict the potential habitat of the species. 

 

2.  STUDY AREA 

 

The study area is located in the Huisun Experimental Forest Station (HEFS) in central Taiwan.  

Its geographic coordinates approximately fall within 121°1’–121°8’ east longitude and 

24°2’–24°6’ north latitude.  The total area of the station is 7,477 ha and divided into 19 forest 

classes.  Altitude ranges from 454 m to 2,418 m, including the ecological environment from 

low altitude to medium-high altitude.  There are about 1,100 kinds of plants in HEFS, which is 

a representative forest in central Taiwan (Lo et al., 2011). 

 

3. MATERIALS AND METHODS 

 

3.1 Field Data 

 

The samples of LCC and JE are based on the data accumulated by the previous long-term 

ground surveys in our laboratory.  These ground surveys were conducted to use Trimble Pro 

XR GPS with a 5 m telescopic extension antenna and a laser range finder. 

 

There were 120 LCC and 224 JE samples collected in this study and the background samples are 

randomly sampled from other areas except the target sample point. The ratio of target sample to 

background sample is 1:1.  This study compared the influence of DEM with different spatial 

resolutions on model performance.  It used 5 m, 20 m, and 40 m grids as the unit to merge 

samples, which means samples that fall on the same cell were merged into a point.  The sample 

size of each resolution is shown in Table 1, and sample ratio for model development and model 

validation is 7:3. 

 

Table 1. Sample size of target tree species 

Resolution Long-leaf 

chinkapins 

Japanese 

Elaeocarpus 

5m 111 200 

20m 82 132 

40m 61 97 

 

 

 



3.2 Environmental factors 

 

In this study, ten environmental factors were selected.  The layers for elevation, slope, aspect, 

surface curvature (SC), profile curvature (PRC), and plan curvature (PLC) were generated from 

DEM by ArcGIS software package.  Global solar radiation (GSR) layer was calculated as the 

sum of direct and diffuse radiation.  We used ArcGIS to output direct radiation raster and 

diffuse radiation raster, then calculated them together to get GSR.  The calculation of terrain 

position (TP) is much more complicated than others.  First, we digitized ridges and valleys 

from the DEMs, then calculated the Euclidean distance from each cell to the nearest ridge and 

valley line, and last determined the relative position ratio, the formula is shown as follows: 

 

 
 

where  = Euclidean distance from point P to the nearest valley line 

    = Euclidean distance from point P to the nearest ridgeline 

   P = a validation point (cell) 

    = the relative position ratio of j row and i column 

 

In this study, the ridgeline is the highest slope position, represented by "1", while the valley line 

is the lowest slope position, represented by "0".  Also, we divided TP into three categories 

based on the complexity of the ridgeline and valley line.  While mapping, ridges or valleys 

which seems larger will be classified in TP1.  TP2 will add secondary ridgelines and valley 

lines in the map.  The most intricate one is TP3, it contains almost every ridges and valleys 

which can be identified in the DEMs.   

 

3.3 Model Development 

 

This research used the machine learning module written in python programming language to 

develop SDMs, applying scikit-learn to create discriminant analysis (DA), decision tree (DT), 

and random forest (RF).  To maximize the performance of the model, hyperparameter tuning 

played a key role.  The hyperparameters of each model in this study, DA is the prior probability, 

both DT and RF are child-node, parent-node, and depth.  In addition, this study used the 

Python programming language to construct a loop to exhaust the possibilities of all parameter 

combinations, and import the DA, RF and DT models one by one to find out which combination 

has the best kappa value. 

 

3.3.1 Discriminant Analysis:   Discriminant analysis is a technique to distinguish the 

differences between groups (Chen et al., 2013). It has been used widely in many applications 



(Ye et al., 2005).  It selects the observed values of known categories in advance and choose 

samples which has classification effect, use grouping variable as the reaction variable, multiple 

measured discriminant variables as the explanatory variable to establish the discriminant 

function (Lo et al., 2011), the formula is as follows: 

 

           (2) 

 

where  = discriminant score 

 = discriminative variable 

 = discriminant coefficient 

 

Most of the hyperparameters of DA are preset by the scikit-learn module.  The only 

hyperparametersp we tuned is prior probability, and set it as 0.5. 

 

3.3.2 Random Forest:  Random Forest (RF) is an ensemble classifier, which generates 

predictions by building multiple decision trees, and obtains the final prediction results through a 

majority vote (Shao, 2020).  In RF algorithm, many decision trees are randomly created with 

“boot-strap samples” from the data set, and the final estimate is the average of all results from 

each tree (Yeşilkanat, 2020).  The hyperparameters we choose and their setting values are the 

same as DT.  The number of decision trees (n_estimators) is set to 500, and when cutting 

variables, the number of potential variable list (max_features) randomly sampled is also 

generally recommended to be set to the root of all variables. 

 

3.3.3 Decision Tree:  The principle of classification tree is to establish a dichotomy 

classification rule of one-to-multi-layer tree structure for the input original data, according to 

this rule to predict the unknown result data.  The nodes are the points in a tree where a test is 

done on the attribute, and branches are test result that leads to another node (Vanfretti and Arava, 

2020).  There are three kinds of nodes: root node, internal node and leaf node. The root node is 

on the top, internal nodes are in-between and leaf nodes are assigned a final outcome based on 

group membership of the majority of observations. 

 

Figure 1. The diagram of the classified process of DT (Lan et al., 2020) 



 

 

Figure.2 DT maximum depth, parent node, and child node kappa value curve of Japanese 

Elaeocarpus *each number present an environmental factor 

 

3.3.4 Maximum Entropy:  MAXENT software is freely available on the worldwide web 

(https://www.gbif.org/zh-tw/tool/81279/maxent).  It is one of the most robust and advanced 

modeling approaches for presence-only data (Qin et al., 2020).  This method employs the 

maximum entropy algorithm and species occurrence to predict habitat distribution (Abolmaali et 

al., 2018).  It requires only presence data, and environmental information of the study area.  

Therefore, when there are not many training samples, it has an advantage (Phillips et al., 2006).   

 

3.4 Model Validation 

 

The purpose of model validation is to analyze the prediction results and understand the 

reliability of the model.  Accuracy assessment contains the kappa coefficient and Matthews 

correlation coefficient (MCC).  The range of kappa value is -1 to 1, but it usually falls between 

0 and 1.  The higher the kappa value was, the more consistent it will be (Wang, 2012).  MCC 

is the correlation coefficient of binary classification, the value is between -1 and 1, 1 means all 

predictions are correct, 0 means not better than random predictions, -1 means all predictions are 

wrong (Shao, 2020). 

 

4.  RESULTS AND DISCUSSION 

 

According to the result of the optimal combination of parameter, we found out that elevation, 



slope, and TP2 are the most important environmental factors that affect the performance of 

SDMs for two species .  Table 2, 3, and 4 are the statistics of the environmental factors of two 

species and study area, it shows that the elevation range of JE was much greater than that of 

LCC, that were about 1630–2100 m and 650–1740 m, respectively.  The average slope of JE 

was also steeper than that of LCC, and both TP1, TP2 shows that most LCC survive at ridges 

while JE can adapt to valleys or ridges but prefer to live on mountainside.  For LCC, the 

average of SC and PRC pointed out that this species usually grows at convex surfaces, while the 

curvature of JE didn’t provide useful information.  The experience of the field survey in the 

past pointed out that LCC could only grow in elevation above about 1700 m (Lo et al., 2011).  

It means that there are significant limits in elevation for LCC.  As for JE, the limiting factors 

are fewer than those of LCC.  According to table 3 and 4, we found out that the growth area of 

JE has no obvious ecological characteristics, its distribution is about 647 – 1,750 m, which 

almost covers the altitude range of the entire study area.  This means that it has no distinct 

lower limit of tolerance at elevation, and the upper limit of tolerance is about 2,000 m, but still 

need to consider the latitude with more detailed investigation and analysis. 

 

Table 2. The statistics of long-leaf chinkapins in study area (5m) 

statistics Elevation 

(m) 

Aspect 

( ) 

Slope 

( ) 

SC 

(m-1) 

PLC 

(m-1) 

PRC 

(m-1) 

TP1 TP2 TP3 GSR 

(Wh/m2) 

mean 1893 185 15 0.8 0.3 -0.4 1.0 1.0 0.3 1789310 

min 1533 1 2 -24.7 -14.4 -10.8 0.4 0.8 0.2 1135050 

max 2081 358 41 19.0 8.7 14.5 1.0 1.0 1.0 1996670 

 

Table 3. The statistics of Japanese Elaeocarpus in study area (5m) 

statistics Elevation 

(m) 

Aspect 

( ) 

Slope 

( ) 

SC 

(m-1) 

PLC 

(m-1) 

PRC 

(m-1) 

TP1 TP2 TP3 GSR 

(Wh/m2) 

mean 1255 193 42 -0.9 -0.4 0.4 0.5 0.5 0.1 1244801 

min 648 0.6 22 -56 -27 -19 0.0 0.0 0 560313 

max 1740 359 60 47 31 36 1.0 1.0 1 1898924 

 

Table 4. The statistics of study area (5m) 

statistics Elevation 

(m) 

Aspect 

( ) 

Slope 

( ) 

SC 

(m-1) 

PLC 

(m-1) 

PRC 

(m-1) 

TP1 TP2 TP3 GSR 

(Wh/m2) 

mean 1290 192 39 -0.4 -0.1 0.3 0.4 0.5 0.1 1348391 

min 515 1 1 -75.4 -32.9 -29.1 0.0 0.0 0.0 491170 

max 2372 360 72 45.2 25.9 51.5 1.0 1.0 1.0 1955534 

 

The Python programming language had already found out which combination has the best kappa 



values, we chose parameters which appears frequency and import to the DA, RF, MAXENT, and 

DT models.  Table 5 shows the accuracies of models for the two species.  SDMs that used 5 m 

DEM usually have higher accuracies then 20 m or 40 m.  The possible reason is related to the 

reduction of the number of samples due to merge, resulting the stability of the model decrease.  

However, in JE’s RF model, the accuracy of 40 m is better than that of 20 m, the reason for this 

result is still unclear.  For JE the rank of these four method was (from high performance to low): 

RF, DT, MAXENT, and DA.  In this study RF and DT both are suitable methods to build SDM.  

As for LCC, RF and DT also performed well, much better than MAXENT and DA.  After 

comparing the models of the two species, it is no doubt that the model performance of LCC is 

significantly better than JE.  The reason may be that JE is a species with a broad EA, causing it 

hard to correctly distinguish JE from background. 

 

Table 5 model performance for predicting the potential habitats of two tree species 

Model Japanese Elaeocarpus Long-leaf chinkapins 

 kappa OA (%) kappa OA (%) 

 5m 20m 40m 5m 20m 40m 5m 20m 40m 5m 20m 40m 

DA 0.50 0.56 0.46 75 78 73 0.95 0.91 0.89 97 94 93 

DT 0.75 0.67 0.59 88 84 80 0.97 0.92 0.95 97 96 97 

RF 0.73 0.58 0.70 87 79 85 0.98 0.96 0.95 99 98 97 

MAXENT 0.65 0.57 0.51 88 78 75 0.95 0.92 0.90 97 95 94 

 

5.  CONCLUSIONS 

 

The four methods we chose in this study, DT and RF both have higher accuracies than the 

remaining do.  It points out that these two methods are fitted for predicting the habitat of JE 

and LCC, while MAXENT and DA only suitable for LCC. 

 

Generally speaking, rare species have more limits factors than widespread species, grasping 

these key factors can improve the accuracy of SDM, this is why the former is relatively easier to 

simulate the spatial distribution of species.  However, LCC isn’t a rare species and is even 

widely distributed in the mountainous area.  The reason why the accuracies of LCC’s SDM is 

much higher than JE is due to the tolerance limits such as elevation and slope, which means that 

even if it is a widely distributed species, when discovered its growth limiting factors, we still 

can accurately predict its potential habitat, as in the case of this study. 

 

Our study didn’t find out the main factor which limits the growth of JE due to its broad EA.  

There are some ways to improve this situation, such as adding new factors (e.g. temperature, 

humidity, biotic interactions, soil type or other terrain-related variables), keep field survey to 

add new samples of JE, use DEM with high spatial resolution (1m) derived from LiDAR, and 



test deep learning methods like convolutional neural network (CNN). 
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