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ABSTRACT: Highly-frequent precipitable water (vertically integrated water vapor) measurements 

are required for short-term forecasting of severe weather events such as heavy rain. Although there 

are a number of methods for measuring precipitable water already exist, wide-area observations with 

high spatial and temporal resolutions are still difficult. Since Himawari-8 began its observation, it 

became possible to observe the area of Japan every 2.5 minutes with the spatial resolution of 2 km 

by infrared bands. Although there are restrictions due to clouds, we can estimate the precipitable 

water by using infrared brightness temperatures (Tbs) observed by the Advanced Himawari Imager 

(AHI) onboard Himawari-8. In this study, we performed two types of regression analyses, multiple 

linear regression (MLR) and support vector regression (SVR) to estimate the precipitable water from 

AHI Tbs by using simulation- and observation-based datasets. Also, we validated the accuracy of the 

estimates by using precipitable water observed by radiosondes. We prepared several datasets for 

estimating parameters of regression models and validating the performance of the models. For the 

parameter estimation, we used two datasets. One dataset consists of simulated Tbs computed by the 

Radiative Transfer for TOVS (RTTOV) and corresponding precipitable water values (RTTOV 

dataset). When simulating Tbs, we used temperatures, relative humidity, and air pressure data 

provided from the Japanese 55-year Reanalysis or JRA-55. Another dataset was created by using 

collocated data from AHI infrared Tbs and GPS precipitable water estimates (GPS dataset). For the 

validation, collocated dataset of AHI infrared Tbs and precipitable water estimates from radiosonde 

data was prepared (RAOB dataset). As explanatory variables of regression models, multiband Tbs 

and satellite zenith angle were used. As a result of band selection by using SVR models, Tbs at bands 

13, 15, and 16 were selected as optimum and minimum explanatory variables. Band 13 and 15 are 

already known as important bands for estimating precipitable water, such as in the traditional split-

window model. The probable reason of selecting band 16, located on the edge of CO2 absorption 

lines, is the better correlation with air temperature. As the results of MLR models, the root mean 

squared error (RMSE) values against RAOB dataset were 8.1 and 7.5 mm for 3-band algorithms 

optimized by RTTOV and GPS dataset, respectively. For the SVR models, RMSE values against 

RAOB dataset were 8.6 and 7.3 mm for the optimized by RTTOV and GPS dataset, respectively. 

 

1. INTRODUCTION 
 

For short-term forecasting of severe weather events such as heavy rain, highly-frequent water vapor 

measurements are required. Although there are a number of existing methods for measuring water 

vapor content, such as radiosondes, and Global Navigation Satellite Systems (GNSS), wide-area 

observations with high spatial and temporal resolutions are still difficult. As one of the satellite-based 

remote sensing observation techniques, visible- and infrared- based observation techniques, such as 

the split-window technique (Akatsuka et al., 2011), have been intensively investigated. Hereafter, we 

call the value obtained by integrating the amount of water vapor in the vertical direction precipitable 

water. 

 

Since Himawari-8 began its observation on July 7, 2015, it became possible to observe the entire 

Earth as seen from the satellite (hereafter called Full-Disk) every 10 minutes with the spatial 

resolution of 2 km, and the area of Japan every 2.5 minutes with the same spatial resolution that of 



Full-Disk. The number of bands increased from 5 to 16 and the horizontal resolution was improved 

from 4 to 2 km in infrared bands compared to the predecessor imager on the Multi-functional 

Transport Satellite (MTSAT) series. Since atmospheric conditions change in a short period of time, 

observed precipitable water with short time interval like by Himawari-8 are useful for forecasting 

weather changes. Also, the increased spatial resolution may help improving the accuracy. In this 

paper, we will describe and discuss the regression models to estimate the precipitable water from 

Himawari-8 infrared bands, and the validation results against collocated in-situ measurements.  
 

2. INSTRUMENT AND DATA 
 

2.1 Himawari-8 and AHI 

 

The Himawari-8 satellite was developed and is being operated by the Japan Meteorological Agency 

(JMA). The Advanced Himawari Imager (AHI) on Himawari-8 consists of 3 visible bands, 3 near 

infrared bands, and 10 infrared bands. We used only infrared bands in this study. Table 1 shows the 

specification of infrared bands of Himawari-8 (Bessho et al., 2016). 

 

We downloaded the Himawari L1 Gridded data from the P-Tree system maintained by the Japan 

Exploration Agency (JAXA). The data cover AHI Full-Disk area with 2 km spatial resolution every 

10 minutes. 

 

Table 1. Specification of infrared bands of Himawari-8. 
 

Channel Number Spatial Resolution at Sub Satellite Point (km) Central wave length (µm) 

7 2 3.8853 

8 2 6.2429 

9 2 6.9410 

10 2 7.3467 

11 2 8.5926 

12 2 9.6372 

13 2 10.4073 

14 2 11.2395 

15 2 12.3806 

16 2 13.2807 

 

2.2 JRA-55 and MGDSST 

 

In simulating AHI Tbs, we used the Japanese 55-year Reanalysis (JRA-55) (Kobayashi et al., 2015) 

and the Merged Satellite and In-situ Data Global Daily Sea Surface Temperatures (MGDSST) 

(Sakurai et al., 2005), both provided by JMA. The JRA-55 data contain analyzed atmospheric profiles 

such as air temperature, pressure, and relative humidity with 1.25-degree resolution and every 6 hours. 

Table 2 shows the specification of JRA-55 data used in our analysis.  

 

Table 2. Specification of JRA-55 data used in our analysis. 
 

Date Time Area Number of profiles 

 January 10, 2016 

12UTC AHI Full-Disk Area 9409 for each 
July 10, 2016 

October 10, 2016 

April 10, 2017 

 

2.3 GPS AND RADIOSONDE PRECIPITABLE WATER DATA 

 

The Global Positioning System (GPS) precipitable water dataset was created by JAXA to validate 



the accuracy of satellite precipitable water. The dataset contains precipitable water values estimated 

from the GPS signals over 123 points, which were selected from the GPS points registered by the 

International GNSS service (IGS). We used the data over 22 stations located within AHI Full-Disk 

area. Figure 1 (a) shows the location of GPS stations used in this study.  

 

The radiosonde dataset was also created by JAXA. This dataset contains the atmospheric vertical 

profiles for temperature, air pressure, relative humidity, and calculated precipitable water. We used 

the locations within the AHI Full-Disk area. Figure 1 (b) shows the location of radiosondes used in 

this study.  

 

 
 

Figure 1. Locations of (a) GPS and (b) radiosonde stations used in the present study. Blue points 

represent the station positions. 

 

3. METHOD 

 

For retrieving precipitable water, we tested two types of regression models including multiple linear 

regression (MLR) and support vector regression (SVR). To determine parameters of these models 

and validate the performance, we prepared several datasets. For the parameter determination, we used 

simulation-based and observation-based datasets. The simulation-based dataset consists of simulated 

Tbs computed by the Radiative Transfer for TOVS (RTTOV) (Saunders et al., 2018) and 

corresponding precipitable water values (RTTOV dataset). The observation-based dataset consists of 

collocated data of AHI infrared Tbs and GPS precipitable water estimates (GPS dataset). For the 

validation, collocated dataset of AHI infrared Tbs and precipitable water estimates from radiosonde 

data was prepared (RAOB dataset). 

 

3.1 Dataset preparation 

 

To prepare the RTTOV dataset, we simulated AHI Tbs by using RTTOV with atmospheric profiles 

from JRA-55 including temperature, air pressure, and relative humidity. For all the atmospheric 

profiles, we set the satellite zenith angle (SZA) to 5, 43, and 60 degrees. As the surface temperatures, 

we used MGDSST values over ocean. Due to the lack of good data source, we used air temperatures 

at 1-m height over land instead of land surface temperatures. Corresponding precipitable water 

amounts were available in JRA-55 data. The available number of data is 112,908 in total. Because of 

the inability to estimate the precipitable water over cloud-covered areas by using infrared Tbs, we 

need to remove the cloud-covered data in creating the GPS and RAOB datasets. In this study, we 

adopted simple and empirical method using Tbs decreases due to clouds at Band 13, which is the 



most transparent band against water vapor absorption. First, we picked up the highest hourly Tb value 

of Band 13 in each month over each pixel. We assumed this value as a cloud-free Tb of the hour, 

month, and pixel. When a difference between a Tb at targeted pixel and the corresponding cloud-free 

Tb exceeds the threshold value, we judged the pixel as cloudy. By the visible inspection of images, 

we adopted the value of 4 K as the appropriate threshold. After this cloud masking process over the 

AHI Tbs, temporally and spatially collocated Tbs against GPS and RAOB measurements were 

extracted. In total, the available numbers of data are 248115 and 10704 for GPS and RAOB dataset, 

respectively. 

 

3.2 Regression models 

 

3.2.1 MLR 

 

Based on the existing investigations on split-window method (e.g., Akatsuka et al., 2011), MLR 

models will work to some extent, although they may not be perfect due to the nonlinear nature of the 

precipitable water retrieval and multi-collinearity problems. To investigate the advantage of newly-

installed infrared bands for AHI, we tested MLR models to retrieve precipitable water. Precipitable 

water �� can be expressed as follows. 

 

�� = �� + � �� ∗ 
���
��
�
��� + ��� ∗ cos������ �1� 

 

Here, �� and 
�� are the regression coefficients and Tbs for band x, respectively, and ���� represents 

SZA. 

 

3.2.2 SVR 

 

Because of the ability to handle nonlinear problems and the robust characteristics for noise and multi-

collinearity issues, we wanted to test Epsilon-SVR for comparing with the results by MLR. As is the 

case in MLR analysis, explanatory variables are multi-band infrared Tbs and SZA. To train the 

models, we used LIBSVM software (Chang and Lin, 2011) implemented in e1071 packages on R. 

Although we need to decide hyper-parameters to obtain ideal model, we used default values in this 

analysis. In creating the models, we randomly divided the dataset into equal-sized training and 

validation datasets to check the over-training issue. 

 

3.3 Band selection 

 

We evaluated the appropriate bands for SVR models by using the GPS dataset, and the same bands 

were used for MLR models. For the band selection, we adopted the step-down approach. Starting 

from 10 bands, we created the model by using the training dataset, and sequentially excluded a band 

that provided the least contribution (in other words, did not make the performance worse) for the 

validation dataset at each stage. 

 

We used root mean squared error (RMSE) for the validation dataset as a performance indicator. The 

equation of RMSE is as follows, 

 

���� =  !1" �#� − #%��& �2� 

 

In Equation (2), N,  #� , and #%�  indicate the number of data, predict value, and actual value, 

respectively. 

 

 



4. RESULTS AND DISCUSSION  

 

4.1 Band selection 

 

Figure 2 summarizes the result of band selection for SVR. We can see the noticeable improvement 

of RMSE by 3-band algorithm compared to that by 2-band algorithm. After that, the improvement 

was not so significant, although increasing the number of bands gradually decreased the RMSE. The 

selected bands for 3-band algorithm were Bands 13, 15, and 16. Bands 13 and 15 are the typical 

bands used in the split-window algorithm. As indicated in Fig. 2, Band 16 is located in the CO2 

absorption band. It is well known that there is a good correlation between observed Tbs at CO2 

absorption bands and air temperature, and they are utilized as air temperature sounding. Since the 

typical split-window algorithm actually needs the mean-radiation temperature of the atmospheric 

layer, it is reasonable to think that Band 16 provided the information of air temperature and improved 

the performance. Based on this result, we will describe the results only for 2- and 3-band algorithms 

in the next section. 

 

 
 

Figure 2. Summary of band selection for SVR. Left panel indicates the number of bands used and 

corresponding RMSE. Right panel shows the bands used in each stage. 

 

4.2 Algorithm performance 

 

Table 3 shows the RMSE values for different algorithm. For example, MLR-SIM-2 stands for the 

algorithm with 2-band MLR model trained by RTTOV dataset, and MLR-OBS-3 stands for the case 

with 3-band MLR model trained by GPS dataset. Figures 3 and 4 show the scatter plots for different 

algorithms. We should note that, for MLR-OBS-2 and MLR-OBS-3, RMSE values for GPS dataset 

are just for reference, since they were actually trained by the GPS dataset.  

 

Table 3. Performance in RMSE for different MLR algorithms. 
 

Algorithm 
RMSE [mm] 

GPS RAOB 

MLR-SIM-2 9.7 9.7 

MLR-SIM-3 7.9 8.1 

MLR-OBS-2 (8.1) 9.0 

MLR-OBS-3 (6.3) 7.5 

 

 

 

 



 
 

Figure 3. Scatter plots of (a) MLR-SIM-2, (b) MLR-SIM-3, (c) MLR-OBS-2, and (d) MLR-OBS-3 

against precipitable water observed by GPS. Horizontal and vertical axes are GPS precipitable water 

and estimated precipitable water, respectively. 

 

 
 

Figure 4. Same as Fig. 3, except against precipitable water observed by radiosondes. 



As we can see from the results, for against both GPS and RAOB datasets, the 3-band algorithms with 

Band 16 performed better than the traditional 2-band algorithms. From the training dataset point of 

view, the algorithms trained by the GPS dataset performed better than those trained by the RTTOV 

dataset. 

 

Table 4 shows the RMSE values for different SVR algorithms. The naming convention of the 

algorithms is similar to that for MLR algorithms. Figures 5 and 6 are the scatter plots for different 

SVR algorithms. Also similar to the MLR algorithms, for SVR-OBS-2 and SVR-OBS-3, RMSE 

values for GPS dataset are just for reference. 

 

Table 4. Performance in RMSE for different SVR algorithms. 
 

Algorithm 
RMSE [mm] 

GPS RAOB 

SVR-SIM-2 7.2 8.3 

SVR-SIM-3 7.6 8.6 

SVR-OBS-2 (5.2) 9.5 

SVR-OBS-3 (3.7) 7.3 

 

For the observation-based algorithms, SVR-OBS-2 and SVR-OBS-3, the 3-band algorithm 

performed better than the 2-band algorithm similar to the MLR algorithms. However, this is not the 

case for simulation-based algorithm, SVR-SIM-2 and SVR-SIM-3. The 3-band algorithm showed 

slightly larger RMSE values. This is probably due to the tendency of overestimation shown by larger 

slopes than unity in Fig. 5(b) and Fig. 6(b). One potential reason is the difference between simulated 

and observed Tbs due to errors in both radiative transfer model and sensor calibration. The SVR 

algorithms may be more sensitive to this issue due to the better expressive ability. 

 

When we compare the performances between MLR and SVR algorithms, at least in the current 

research phase, we should state that the advantages in SVR algorithms are not clear, particularly for 

RAOB dataset validation. In this paper, we did not perform any hyper-parameter optimizations for 

the SVR algorithms. We need to optimize the algorithms without any overfitting issues in future. 

Regarding the training dataset, we originally expected that the RTTOV dataset could be better 

because of the wide coverage of geophysical conditions. However, this was also not clear in this 

study. In the next step, we need to confirm the consistency between simulated and observed Tbs. In 

addition, several assumptions and configurations in the Tb simulation should be re-considered. We 

arbitrarily set the SZAs for all atmospheric profiles in this study. However, for example, it is unlikely 

to couple a tropical atmospheric profile and large SZA. We need to select realistic conditions. As 

surface temperatures over land, we used 1-m height air temperature instead of land surface 

temperatures. We need to confirm the validity of this assumption. Additionally, to create ideal 

datasets for regression analysis, we need to confirm the performance of the cloud mask.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Figure 5. Scatter plots of (a) SVR-SIM-2, (b) SVR-SIM-3, (c) SVR-OBS-2, and (d) SVR-OBS-3 

against precipitable water observed by GPS. Horizontal and vertical axes are GPS precipitable water 

and estimated precipitable water, respectively. 

 

 
 

Figure 6. Same as in Fig. 5, except against precipitable water observed by radiosondes. 



5.CONCLUSION 

 

We performed two types of regression analyses, MLR and SVR, to estimate the precipitable water 

amount from AHI Tbs by using simulation-based (RTTOV) and observation-based (GPS) dataset for 

training, and validated the accuracy of the estimates by using RAOB dataset. Through the band 

selection by using SVR models, Bands 13, 15, and 16 were selected as optimum and minimum 

explanatory variables. The probable reason of selecting band 16, located on the edge of CO2 

absorption lines, is the better correlation with air temperature. As the results of MLR models, the 

RMSE values against RAOB dataset were 8.1 and 7.5 mm for the 3-band algorithms trained by 

RTTOV and GPS dataset, respectively. For the SVR models, RMSE values against RAOB dataset 

were 8.6 and 7.3 mm for the 3-band algorithms trained by RTTOV and GPS dataset, respectively. 
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