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ABSTRACT: In this paper, we describe our development of FireNet, a lightweight, non-complex 
convolutional neural network, specifically for the task of detecting fires in high resolution satellite 
images. This CNN is aimed at assisting our regional fire monitoring operation that has been conducted 
by visual scanning of high resolution images for signs of smoke plumes. The FireNet is adapted from 
a variety of DenseNet and trained using a dataset of high-resolution satellite images accumulated 
through the many years of fire monitoring operation. Overall, our FireNet has comparable performance 
to that of DenseNet despite having a reduced model capacity and simple construct. 

 

 

1. INTRODUCTION 

 

Land and forest fires with the associated transboundary haze pollution is a main environmental 

concern in the Southeast Asia region. Regional fire monitoring is normally done with hotspots 

derived from thermal sensors such as the Moderate Resolution Imaging Spectrometer (MODIS) on-

board the Terra and Aqua satellites (Giglio et al. 2016). Such sensors typically have low resolution 

ranging from a few hundred meters to a kilometer or so. The Centre for Remote Imaging, Sensing 

and Processing (CRISP) at the National University of Singapore has been monitoring the regional 

fires using high resolution multispectral satellite imagery since 1998, shortly after the major fire 

episode in 1997/1998 (Miettinen et al. 2013, Liew et al. 2003). 

 

Detection of fires in high resolution satellite imagery usually involves domain experts who pre-

process and visually scan the displayed images for sign of smoke plumes. The procedure is laborious 

and time consuming. Machine learning is a good approach to automate this process of searching for 

smoke plumes in the satellite images. In this paper, we propose a lightweight and non-complex 

Convolutional Neural Network (CNN) that is developed by adapting a widely accepted CNN 

architecture, DenseNet (Huang et al. 2017), through ways of revising and scaling based on a set of 

non-rigorous design heuristics. Overall, our CNN has comparable performance to that of DenseNet 

despite having a reduced model capacity and simple construct. 

 

Convolutional neural networks (CNN) are a specific type of machine learning methods commonly 

used for analyzing visual imagery (Albawi et al. 2017). Many large pre-trained neural networks are 

available. However, they are mainly trained with ground-level image datasets. The image features 

are inherently incompatible with those in aerial or satellite images. Thus, we build and train the base 

models from scratch, using satellite images and ground truth data derived from CRISP high resolution 

satellite image dataset accumulated during the fire monitoring operation that spans over a period of 

more than 20 years. As the labelled dataset for satellite images is limited in quantity compared to the 

ground-level images, we tweaked the architecture of a suitable CNN to overcome this constraint. A 

densely connected convolutional network (DenseNet) has an architecture that connects each layer to 



 

 

every other layer in a feed-forward manner (Huang et al. 2017). This design gives DenseNet many 

advantageous properties such as the implicit deep supervision (Wang et al. 2016) and reduced number 

of parameters, among others, that facilitate the construction of a CNN that circumvents the 

aforementioned constraints. Based on the DenseNet, we constructed a lightweight and non-complex 

CNN (nicknamed “FireNet”) specifically for the detection of fires in high resolution satellite images. 

The FireNet is an attempt in effective utilization of currently available shared resources to meet our 

operational requirements. 

 

 

2. METHODOLOGY 

 
We followed a set of simple rules to construct our model. First, a non-rigorous approach to compound 
scaling (Tan et al. 2019) is performed by manually adjusting the network architecture to achieve an 
optimal balance between the three aspects of the model, i.e. input resolution, depth, and width of the 
CNN, for efficient execution. With a limited labelled dataset, we next utilized implicit deep supervision 
to perform feature extraction and representation learning. We trained our model from scratch using our 
training dataset in order to effectively match the CNN to our intended application with considerations 
to the practicality and extensibility/flexibility of machine learning (ML) to meet our operational needs.  
 
Our dataset is derived from high resolution satellite images used in CRISP fire monitoring operation 
since 1998. We generated the ground truth data from the dataset by annotating the locations of all 
detected fires with visible smoke plumes in the satellite images. The images were then partitioned into 
almost 100 thousand image chips and categorized into the fire and background (no fire) groups. About 
24,000 of these image chips contain fire locations with smoke plumes.  About 19,000 fire image chips 
together with the same number of background chips were used in the training and validation of the 
FireNet. A quarter of these samples were used for training and the rest for validation. A separate testing 
of the FireNet used about 54,000 image chips that included about 4,000 positive (fire) and 50,000 
negative (background) samples. Figure 1 shows examples of the dataset used in the training, validation, 
and testing of our FireNet. 
 
 

 
Figure 1. Examples of CRISP high-resolution satellite image dataset 

 
Our FireNet is architecturally similar to DenseNet-121 (Huang et al. 2017), a variant of the DenseNet. 
Each dense block of the DenseNet is changed to a cascade of 3 × 3 (growth-rate=32)-grouped 
convolution layers and a shrunk block configuration of (2, 4, 8, 6), as illustrated in Table 1. The FireNet 
has about 1.05 million parameters and requires a memory size of 8603 kB which are more than a 
factor of 6 reduction compared to DenseNet-121 (Huang et al. 2017). The FireNet uses the same model 



 

 

hyperparameters as the DenseNet-121 (Huang et al. 2017) without any fine-tunings and randomization 
(by setting the same random seed). The FireNet is expected to perform better operationally with a more 
optimal adjustment of the parameters. The locations fire sources in the images can also be visualized 
by overlaying the score-weighted class activation map (CAM) to highlight the possible positions of the 
fire sources (Figure 2).  

 

Table 1. FireNet architecture 

Convolution 7×7 conv, stride 2 

Pooling 3×3 max pool, stride 2 

Dense Block (1) [32-grouped 3×3 conv] × 2 

Transition Layer (1) 1×1 conv, 2×2 average pool, stride 2 

Dense Block (2) [32-grouped 3×3 conv] × 4 

Transition Layer (2) 1×1 conv, 2×2 average pool, stride 2 

Dense Block (3) [32-grouped 3×3 conv] × 8 

Transition Layer (3) 1×1 conv, 2×2 average pool, stride 2 

Dense Block (4) [32-grouped 3×3 conv] × 6 

Classification Layer 7×7 global average pooling, 

2D fully connected, softmax 

 

 

   
Figure 2. Examples of visualizing fire locations by overlaying the CAM on the image 

 

 

3. RESULTS 

 

For each input image chip, the FireNet output a decimal number ranging from 0 to 1 representing the 

confidence level that a fire is present in the image. Fire is considered to be present in the image chip 

if the confidence level is greater than a predefined threshold value. In principle, an optimal threshold 

value can be determined according to the probability density functions of the confidence level for 

both the fire and no-fire samples (Liew et al. 2005). For operational purposes, we fix the threshold 

value to be 0.5. We used 9,657 image chips consisting of approximately equal number of fire and no-

fire samples for validation of both the DenseNet-121 and FireNet. The FireNet is comparable to the 

DenseNet-121 in performance. As shown in Table 2, FireNet correctly classifies 93.8% of fire 

samples and 94.6% of no-fire samples giving an overall accuracy of 94.2% compared to 94.9% for 

DenseNet-121. 

 

Two tests were carried out. The first test used 9,424 unseen image chips with an equal number of fire 

and no-fire samples for testing both the FireNet and DenseNet-121. Both CNNs are comparable in 

accuracy, with an overall accuracy of 89.6% for FireNet and 89.7% for DenseNet-121 (Table 3). In 

the second test, 45,809 all no-fire image chips were used for testing the false positive response of 

both CNNs. Our FireNet falsely classified 2,670 image chips as fires giving a false positive rate of 

5.83% versus 5.54% for DenseNet-121.  

 



 

 

Table 2. Validation results for fire detection by FireNet and DenseNet-121 

with equal number of fire and no-fire samples 

 
Notes: For each CNN, “Targets” are the ground truths while “Outputs” are the results of detection. The numbers in the 

four cells (clockwise, from top left cell) indicate respectively, the true negative (TN), false positive (FP), true 

positive (TP) and false negative (FN) rates.    

 

 

Table 3. Test results for fire detection by FireNet and DenseNet-121 

with equal number of fire and no-fire samples 

 
 

 

Table 4. Test results for false fire detection by FireNet and DenseNet-121 

with all no-fire samples 

 
 

The apparently high accuracy of the CNNs may not be indicative of their performance during the 

actual fire detection operation. In a more realistic scenario of fire detection, the fire and no-fire test 

samples do not appear in equal proportions. There are a lot more image chips without fire than those 

with fires. In this case, the more realistic performance metrics are the commission error (CE) and 

omission error (OE) defined as (Liew et al. 2005), 

 OE = FN            (1) 
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f

f f
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
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where FN, FP, TP are respectively, the false negative, false positive and true positive rates as in 

Tables 2 and f is the fire fraction, i.e. the proportion of fire image chips presented to the CNN. The 

two errors are related to the more familiar producer accuracy (PA) and user accuracy (UA), 

 PA = 1 OE            (3) 

 UA 1 CE             (4) 

If we use the test results for FireNet shown in Table 3, the OE and CE can be expressed in terms of 

the fire fraction by the following equations, 

FireNet 

  Outputs 

Targets 

No fire Fire 

No fire 0.946 (TN) 0.054 (FP) 

Fire 0.062 (FN) 0.938 (TP) 

Overall accuracy: 0.942 

 

DenseNet-121 

  Outputs 

Targets 

No fire Fire 

No fire 0.954 0.046 

Fire 0.060 0.940 

Overall accuracy: 0.949 

 

FireNet 

  Outputs 

Targets 

No fire Fire 

No fire 0.936 0.064 

Fire 0.145 0.855 

Overall accuracy: 0.896 

 

DenseNet-121 

  Outputs 

Targets 

No fire Fire 

No fire 0.936 0.064 

Fire 0.143 0.857 

Overall accuracy: 0.897 

 

FireNet 

  Outputs 

Targets 

No fire Fire 

No fire 0.9417 0.0583 

Fire 0.0000 0.0000 

False positive rate: 0.0583 

 

DenseNet-121 

  Outputs 

Targets 

No fire Fire 

No fire 0.9446 0.0554 

Fire 0.0000 0.0000 

False positive rate: 0.0554 

 



 

 

  OE = 0.145           (5) 
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f
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

 
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Note that the commission error is dependent on the fire fraction f. If the fire fraction is assumed to be 

1%, i.e. f = 0.01, then the commission error is CE = 0.881. Hence, even though the FireNet has a high 

producer accuracy of 85.5%, the user accuracy is not so impressive, at 11.9%. To put these numbers 

in context, suppose that in a typical fire detection operation the CNN detects 100 fires, only 12 are 

true fires while the other 88 are false alarms. So, instead of potentially scanning about 10,000 image 

chips by a human operator to visually look for fires, the human operator now only needs to inspect 

the 100 outputs of the CNN to confirm or reject the presence of fires. The CNN would also missed 

about 14 fires. The fires that escape detection are likely to be small fires with vague smoke plumes. 

These fires would probably also be missed by a human observer.  

 

 

4. CONCLUSIONS 

 

The FireNet described in this paper is a revised and scaled down CNN adapted from a widely 

accepted DenseNet and constructed for the purpose of detecting fires in high resolution satellite 

images. It produced an acceptable accuracy comparable to DenseNet-121, no significant 

miscalibration nor overfitting in our domain of interest. In addition, many images in the dataset are 

quite diversified in appearance as the images were acquired over many different land cover types 

with various atmospheric conditions. There is no deliberate data cleaning performed. It has performed 

reasonably well compared to the DenseNet-121 despite having reduced model capacity and a simple 

construct. With further improvements (such as better hyperparameter tuning, data pre-processing, 

different training-validating-testing procedures, etc.), its performance may be improved and it may 

be adaptable for other detection tasks.  

 

The FireNet has a high true positive detection rate (i.e. the producer accuracy) of about 85% and a 

low false positive rate of about 6%. However, these seemingly good performance should be put into 

the context of a realistic fire operation scenario where the number of fire samples is usually much 

fewer than the background null samples. With a fire fraction of approximate 1%, the user accuracy 

is estimated to be about 12%. The FireNet would still be useful in this case as it would reduce the 

need for a human operator to scan through a large volume of imagery. The role of the human would 

be to verify the detection outputs of the CNN which would require much less human efforts.      
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