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ABSTRACTS: Remote sensing is an effective method to evaluate the damage situation 

after a large-scale nature disaster. Recently, deep learning algorithms have been used 

for the damage assessment from remote sensing images. A series of earthquakes hit the 

Kyushu region, Japan in April 2016, and caused severe damage in Kumamoto and Oita 

Prefectures. Numerous buildings were collapsed by the continuous strong shaking. In 

this study, the authors modified the Mask R-CNN model to extract residential buildings 

and estimate their damage levels. The Mask R-CNN model employs a two-stage 

instance segmentation algorithm which maintains a Convolutional Neural Network 

backbone and a Region Proposal Network with a ROI Align head. The aerial images 

captured on April 29, 2016 (two weeks after the main shock) in Mashiki Town, 

Kumamoto Prefecture, were used as the training and test sets. Comparing with the 

damage report of the field survey, the accuracy for the building extraction was 92%. As 

for the damage estimation, the precision and recall of the collapsed buildings achieved 

approximately 72% and 95%. 

 

1. INTRODUCTION 

 

In last decade, natural disasters occurred frequently over the world. It is important to 

grasp the damage situation immediately after a disaster. Although field surveys could 

provide detailed information, they require huge manpower and take much time. Under 

such circumstances, remote sensing technology is an effective tool to collect damage 

information. In recent years, deep learning algorithms as one category of the machine 

learning methods, have attracted widespread attention in the field of image recognition. 

This method does not require the operator to design the functions for the target detection. 

Instead, the computer would learn the image features automatically and output the 

results. Therefore, the time and workload required for the discrimination could be 

reduced. Meanwhile, highly convolutional neural network algorithms (CNN) have been 

able to identify object categories with higher accuracy than humans (Ishii et al., 2018). 

For these reasons, artificial intelligence neural networks have been widely used for 
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remote sensing images.  

 

Khryashchev et al. (2018) used the high-definition satellite imagery dataset UC Merced 

to classify and identify common aerial objects, such as roads and agricultural fields. 

Yang et al. (2018) developed a model to improve the detection accuracy of the vehicles 

using aerial images. Furthermore, the deep learning algorithms were also applied for 

the damage assessment. Duarte et al. (2018) proposed three multi-resolution CNN 

feature fusion approaches to perform the image classification of building damage 

induced by earthquakes. Naito et al. (2020) compared the two training models using the 

traditional machine learning and the deep learning to identify the damage levels of 

buildings using the aerial images after the 2016 Kumamoto earthquake. Miura et al. 

(2020) developed a CNN model to classify the collapsed, no-collapsed and blue tarp-

covered buildings from the post-event aerial images of the Kumamoto earthquake. 

 

This research employs the neural network algorithm Mask R-CNN, which is mainly 

used for recognition of the large-scale object. This study performs object recognition 

and extraction from wide-area aerial images, and damage classification of residential 

buildings. The proposed model is applied to the aerial photos taken after the 2016 

Kumamoto, Japan, earthquake. Building masks with collapse and non-collapse labels 

are generated automatically. The accuracy of this method is examined using the actual 

damage dataset after the earthquake, and its applicability is discussed in this paper.  

 

2. DEEP LEARNING ALGORITHM AND PARAMETERS 

 

The application of deep learning could be divided in three different fields: classification, 

object detection, and semantic segmentation. The instance segmentation is a recent 

approach including both the object detection and the semantic segmentation. In the 

instance segmentation, the object detection task detects the objects’ classes with a 

bounding box predicted from an image. Then the semantic segmentation task classifies 

each pixel into the pre-defined categories. Thus, it enables us to detect objects and 

precisely segment the mask for each object instance in one structure. In this article, the 

authors modified the instance segmentation algorithms Mask R-CNN introduced by He 

et al. (2018), as an extension to Faster R-CNN (Ren et al., 2016), to recognize buildings 

from a mosaiced aerial image and classify their damage level. 

 

Mask R-CNN adopts a two-stage procedure, with a Region Proposal Network (RPN) 

as the identical first stage. In the second stage, in parallel with predicting the class and 

box offset, Mask R-CNN predicts the class and box offset, and outputs a binary mask 

for each Region of Interest (RoI). Figure 1 shows the structure of Mask R-CNN. 

 

The default dataset for the valuation of Mask R-CNN is Microsoft COCO dataset 

(COCO Consortium, 2015). The images in this database are ground photos, and the 

target object often covers 40-70% of the full frame. On the contrary, aerial images and 

satellite images taken at a high altitude cover many small-scale objects. For this issue, 



the authors modified the size of the anchor boxes for every feature map extracted from 

RPN. The large feature map size corresponds to the area of the small anchor boxes, 

which makes it easier to get more details order to detect small target objects. The 

authors tried two methods to modify the size of anchor boxes: halving and scaling. After 

testing several times on the anchor size parameters, the authors rescaled the anchor size 

from the original [32, 64, 128, 256, 512] to [8, 16, 64, 128, 256] as the final setting for 

training. This step improved the accuracy of the original model. 

 

The optimization method of train strategy uses the Stochastic Gradient Descent (SGD) 

with Momentum. The momentum value was set to 0.9. The learning iteration is set to 

90,000 times. Also, the initial setting of learning rate is 0.0025 with twice 0.0001 weight 

decay at 60000 and 80000 iteration. Table 1 shows execution environment for Mask R-

CNN and Table 2 shows the various training parameters.  

 

 

Figure 1  Structure of Mask R-CNN 

 

Table 1  Execution environment 

CPU Intel Core i7-8700K CPU@ 3.70GHz × 12 

GPU GeForce GTX 1080Ti/PCIe/SSE2 

Memory 32 GB 

OS Ubuntu 18.04 

Programing Language Python 3.7 

Deep learning framework Pytorch 1.4.0 dev20191016 

Platform CUDA 10.1 

 



 
 

3. DATASET 

 

A series of earthquakes affected Kumamoto Prefecture, Japan, in April 2016. Due to 

the continuously strong shaking, more than 8,000 buildings collapsed and about 30,000 

buildings were severely damaged. Geospatial Information Authority of Japan (GSI) 

took aerial photos in the severe damaged regions several times after the earthquakes. In 

this study, the aerial photos of Mashiki Town taken on April 29, 2016 by GSI were used 

to train and test our proposed model. Mashiki Town was one of the most affected areas, 

where severe ground motions with the Japan Meteorological Agency (JMA) seismic 

intensity scale of 7 were observed twice. The distribution of the JMA seismic intensity 

of the main shock in Kyushu region is shown in Figure 2(a) (GSJ, 2016). 

 

The aerial photos used in this study were taken by UltraCamX, with 200 pixels/mm 

spatial resolution (Microsoft Photogrammetry, 2016). Six photos covered the main area 

of Mashiki Town. The basic parameters of the aerial photos are shown in Table 3. The 

mosaiced image is shown in Figure 2(b). Then we cut the mosaiced image to 500×500 

pixels images. Finally, the authors obtained totally 223 images for training and 

valuation. This format was also following that of the Microsoft Common Object in 

Context (COCO) dataset.  

 

These images were labeled manually by the tool LabelMe (Wada, 2015) into two 

damage categories. The building damage categories were cited from the work of 

Yamada et al. (2017). They performed visual interpretation of building damages from 

the post-event aerial photos and field surveys, according to the damage grades 

developed by Okada and Takai (1999). The damage grades were set from D0 to D5. 

Here we merged the damage grades D4 and D5 into “Collapsed” label, including 

collapse and torsion of first floor, partial collapse, total crushing, and beam (roof) 

fracture. The damage grades D0 to D3 were merged to the label “Others”. The detail 

description of the damage classification is shown in Table 4. Several samples of the 

labeled buildings are shown in Figure 3. 

 

Table 2  Training Parameters 

Anchor aspect ratio [0.5, 1, 2] 

Horizontal flip prob train 0.5 

Vertical flip prob train 0.5 

Warmup iteration/method 500/Constant 

Batch size train 2 

Batch size test 1 

 

 



  

Table 3  Acquisition conditions of six aerial photos taken by UltraCam-X 

Number of 

pixels 

Number of 

scenes 
Rotation (°) Division 

Number of 

channels 

7215×4710 4 270 
Training set 

R, G, B 

4710×7215 2 140 
Valuation set 

 

Table 4  Building damage classifications 

Damage 

classifications 
Features in photographs 

Damage grades 

(Okada and Takai, 2000) 
Color 

Collapsed 

• Distortion of the entire 

building, destruction or 

collapse 

D4, D5 Red 

Others 

• No damage 

• Some roof tiles collapsion 

• Lots of roof tiles collapsed, 

or some walls have fallen 

D0, D1, D2, D3 Green 

 

 
(a) Seismic intensity       (b) Mosaiced aerial image 

Figure 2  Study area of Mashiki Town, Kumamoto Prefecture, Japan: (a) JMA 

seismic intensity for the mainshock on April 16, 2016 (GSJ, 2016); (b) the 

mosaiced aerial image taken on April 29, 2016 by GSI (2016). 

 

 

Figure 3  Examples of the buildings labeled in two different damage levels 

 



                                                                                         

4. TRAINING AND VALUATION 

 

The 223 images cut from the mosaiced aerial image enclosed by the red line in Figure 

2(b), were applied to the proposed model. 44 images cover the area enclosed by the 

green line were used for both testing and valuation. The results of multiple backbone 

models were compared: ResNet-101, ResNet-50 (He et al., 2015), Deep Cross Network 

(DCN, Wang et al., 2019), and Facebook-Berkeley-Network (FBNet, Wu et al., 2019).  

 

In object detection problems, Intersection over Union (IoU) evaluates the overlap 

between ground-truth (GT) and predicted-result (PR). It is calculated by Eq. (1). 

𝐼𝑜𝑈 =
𝑎𝑟𝑒𝑎(𝐺𝑇∩𝑃𝑅)

𝑎𝑟𝑒𝑎(𝐺𝑇∪𝑃𝑅)
          (1)                     

Mask R-CNN uses the default Microsoft COCO dataset Evaluation for the detection 

task (He et al. 2018). The evaluation is based on the precision and the recall. Precision 

is the ability of a classifier to recognize only relevant objects. It reflects the proportion 

of true positive detections. Meanwhile, recall measures model’s ability to detect all the 

GTs (that is the proportion of true positives detected in all GTs). The authors also use 

the confusion matrix for further evaluation of the classification results shown in Table 

5. The evaluation indices: Overall Accuracy, Precision, Recall, F-measure, are defined 

by Eqs. (2-5). 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
                       (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
=

𝑇𝑃

𝑎𝑙𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠
                       (3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
=

𝑇𝑃

𝑎𝑙𝑙 𝐺𝑇
                             (4) 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2𝑅𝑒𝑐𝑎𝑙𝑙・𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                   (5) 

Further on, the graph of the relationship between precision-recall rate function is called 

precision-recall rate curve (PR-C). It shows the trade-off between the two metrics to 

change the confidence value of model detection. Average Precision (AP) is the area 

under the PR curve. Mathematically, AP is defined by Eq. (6). 

𝐴𝑃 = ∫ 𝑝(𝑟)𝑑𝑟
1

0
                               (6) 

Table 6 shows six main metrics of the COCO evaluation, including mAP (mean AP) 

and multiple AP with different 𝛼  values. Mask R-CNN reports AP (mAP), AP50, 

AP75 and AP at different scales (small, medium, large). Table 7 shows the comparison 

of the accuracies obtained by the multiple backbone models. According to the 

comparison, the authors found that ResNet-101 obtained the best mAP among all the 

backbone models, reaching approximately 42.1%. The mAP of Mask R-CNN using the 

default COCO dataset is 38.2%.  



We used the weight obtained in the training process for the valuation images to detect 

buildings and predict damage levels. In the valuation region enclosed by the green line 

in Figure 2(b), there are a total of 628 buildings. After the training step, our model 

generated 657 bounding boxes as buildings. The 603 buildings were successfully 

extracted and masked, whereas 25 buildings were missed. Thirteen out of the 25 

missing buildings were collapsed. The overall accuracy of the building detection 

reached approximately 91.8%, whereas 95.5% of the collapsed buildings were 

identified. Figure 4 shows two examples of the results of the building detection and the 

damage prediction. 

 

The authors considered the two major reasons for the mis-extraction of buildings: 

boundary line missing and other distractions. The evaluation region enclosed by the 

green line area in Figure 2(b), was the most severe damaged area with many fully 

collapsed buildings. Several collapsed buildings split to half or even smaller parts. Thus, 

our model failed to identify them as buildings, and caused certain mis-extraction. Some 

small structures, such as garages, warehouses, were also the distraction factors of the 

processing. They caused the misrecognition of buildings. 

 

Furthermore, the result of the damage classification for the extracted 603 buildings is 

shown in Table 8. The overall accuracy of the classification in our model was 

approximately 85.6%. The recall of the collapsed class reached approximately 95.3%, 

and the precision was approximately 72.4%. The F-measure was approximately 82.3%.  

 

One main reason for the misclassification was the observation angle of the aerial photos. 

Several damage patterns, such as the pancake collapse or damages on the walls, were 

difficult to be observed from the top. Besides, the customed roof design, the scattered 

rubble or the abnormal shaped building would also lead to a misclassification. 

 

Table 5  Confusion Matrix 

Predicted labels (Mask R-CNN) 

 Positive Negative 

Actual labels 

(Visual interpretation) 

Positive TP FN 

Negative FP TN 

*TP: true positive; FN: false negative; FP: false positive; TN: true negative. 

 

Table 6  Average Precisions definded in the COCO Evaluation 

Average Precision (AP)  

AP (mAP for COCO) %AP at IoU .50: .05: .95 (Primary challenge metric) 

APIoU=.50 %AP at IoU= .50 (PASCAL VOC metric) 

APIoU=.75 %AP at IoU= .75 (Strict metric) 

AP Across Scales:  

APsmall %AP for small objects:         area < 322 

APmedium %AP for medium objects:  322 < area < 962 

APlarge %AP for large objects:     962 < area 

 



 

 

 

Table 7  Comparison of the accuracies of the multiple backbone models 

Model AP (mAP) AP50 AP75 APs APm APl 

ResNet-101 

(our model) 
42.1 69.1 44.3 16.2 43.9 26.5 

ResNet-101 41.7 67.9 43.5 16.1 42.1 26.6 

ResNet-50 39.2 67.3 41.8 13.1 41.6 24.9 

DCN 37.2 63.5 40.0 16.5 38.9 24.3 

Fbnet 30.5 47.3 30.7 31.4 29.9 27.4 

 

 

 
Figure 4  Examples of the results of building detection and damage prediction 

 

Table 8  Results of the damage classification 

 Predicted labels (Mask R-CNN) 

  Collapsed Others Precision Recall F-measure 

Actual 

labels 

 

Collapsed 202 77 

72.4% 95.3% 82.3% 

Others 10 314 

 



5. CONCLUSION AND FUTURE STUDY 

 

In this paper, the authors modified the deep learning network framework Mask R-CNN 

to extract buildings and classify their damage level. Six aerial photos which captured 

Mashiki Town, Kumamoto Prefecture, Japan, were used as the training and valuation 

data. The damaged buildings due to the 2016 Kumamoto earthquake were divided into 

two categories: collapsed (the damage grade D4 and D5) and others (the damage grade 

D0-D3). After increasing the complexity of the data set and modifying the anchor size, 

the authors performed automatic mask generation for the building extraction and the 

damage classification. 

 

By training 179 images after 90,000 iterations, the proposed model predicted the results 

of 44 images. Our model achieved the 42.1% mAP, and it was 3% higher than the 

default COCO dataset. The overall accuracy of the building detection reached 91.8%. 

95.6% of the collapsed building could be identified successfully. Although our dataset 

has only 223 images, which were less than the other datasets used for deep learning, 

the overall accuracy of the classification achieves 85.6%. In the future study, the authors 

would increase the number of images to improve the model. 
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