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ABSTRACT: 

Various  machine-learning  techniques  have  been  used  to  model  species  potential  habitat. 
However,  compared  to  species  with  a  clumped  distribution,  building  SDM  for  widely-
dispersed species is more challenging because of their broader ecological amplitude, which 
makes the relationships between tree species and environmental factors more complex.  Thus, 
we chose two representative species: widespread species,  Schima superba (CGT) and semi-
cluster  species,  Rhododendron  formosanum (FR)  in  the  Huisun study area  in  Taiwan  as 
modeling target. This study performed a comprehensive assessment of different combinations 
of  algorithms  and  environmental  variables,  examining  whether  model  predictions  are 
associated with ecological characteristics of species. We took samples randomly from in-situ 
datasets  of  two  species  with  the  3S  technique,  applied  8  algorithms  to  perform species 
distribution modeling (SDM): support vector machine (SVM), decision tree (DT) and random 
forest  (RF)  with  Gini  impurity  and  information  gain,  k-nearest  neighbors  (KNN),  and 
discriminant  analysis  (DA).  Considered  environmental  factors  includes  elevation,  slope, 
aspect, three types of curvatures (surface, plan, and profile), and topographic sheltering index 
(TSI),  all  resampled  into  40/20/5  m,  then  build  and  evaluate  SDM  separately  in  three 
resolutions. Model performance was evaluated with Kappa index and overall accuracy. The 
overall modeling accuracies of FR species were higher than those of CGT species for each 
algorithms. RF_gini, and RF_entropy are the most capable of predicting the tree’s potential 
habitat.  Elevation,  slope, and TSI are the most important environmental variables,  models 
built with combinations of them are more accurate than all the others. Model built with grid 
size of 5 m has the highest Kappa value among all resolutions. However, the outcome clearly 
indicates that the models merely based on topographic variables performed poorly on spatial 
extrapolation over the entire study area. To improve model performance, follow-up study will 
use DEM with finer spatial resolution, add more environmental variables such as humidity 
and  solar  radiation  or  their  surrogates  developed  from  topographic  variables  and  deep 
learning algorithms, such as convolution neural network (CNN).

1. INTRODUCTION

Traditional vegetation ecology had heavily relied on field surveys to collect data for species 
(plants or animals) and environmental variables (climate and soil), and then estimated species 



distribution based on environmental factors derived from a limited number of sampling plots 
and stations, which may lead to severe bias, or possibly even erroneous results. Recently, with 
the fast technological advance in sensors, communication, and computing power, geospatial 
information  systems (GIS),  global  navigation  satellite  system (GNSS),  and remote  sensing 
(RS) have been tightly integrated as a 3S system. Hence, this system has made it possible to do 
more  detailed  survey  on  vegetations  with  higher  efficiency  and  positioning  accuracy,  to 
provide high-quality data over large scales to build species distribution models (SDM), and 
eventually to perform spatial extrapolation with higher accuracy and credibility. Nowadays, the 
evolution  of  3S system conduces  towards  the  popularization  of  precision  forestry  or  even 
intelligent  forestry,  also the global  climate  change has made it  more urgent  to  extrapolate 
species distribution with higher accuracy for ecological conservation, and thus building a high 
precision SDM is very important. SDM builds models with multivariate statistics or machine 
learning algorithms, utilizing the 3S system coupled with field survey data to perform big data 
analysis, is able to inferring interactions between species and the environment to forming the 
spatial  pattern.  SDM  can  provide  information  for  decision-making,  indicating  specie’s 
potential  distribution and the impact  of global  climate change on species’ distribution,  etc. 
These are all important in intelligent forestry.

1.1.Target Tree Species

Schima superba (Chinese  guger-tree,  CGT)  is  a  fine  board-leaf  arbor  in  Theaceae  family, 
widely distributed in Taiwan, most dispersed in elevation of 300–2,300 m. CGT’s wood is 
dense and resistant  to pests;  its  leaves  with high water-content,  CGT has an excellent  fire 
resistance  characteristics,  and  thus  it  can  be  intertwined  with  pine,  fir,  or  camphor  tree 
plantations to prevent the forest fire from spreading.  Rhododendron formosanum (Formosan 
rhododendron,  FR) is  an endemic  evergreen board-leaf  arbor of Taiwan,  distributed in  the 
cloud forest belt at medium elevation, usually clustered on upper slopes to wide ridges or flat  
mountain  tips,  often  growing  under  cypress  forest.  The  3S  system coupled  with  machine 
learning techniques has been widely applied to building SDM for rare plant species, but seldom 
used on widely-dispersed species such as CGT. Also, compared to species with a clumped 
distribution such as FR, it  is  more challenging to build SDM for widely-dispersed species 
because they have a broader ecological amplitude, which makes the relationships between tree 
species and environmental factors more complex  (Hernandez  et al., 2006). Accordingly, this 
study selected these two target species and took samples from them to build models and to 
evaluate the performance of predictive modelling for extrapolating their spatial patterns.

1.2.Study area

The study area is situated in central Taiwan, encompassing the Huisun Experimental Forest 
Station (HEFS), and it has a total area of 17,300 ha. HEFS is the property of National Chung-
Hsing University, located in Nantou, Taiwan, with the geospatial extent 24◦2´–24◦5´ N and 
121◦3´–121◦7´ E, with a total area of 7,477 ha. The entire study area ranges in elevation from 
450 m to 2419 m, and its  climate is  temperate  and humid. In addition,  the study area has 
nourished many plant species more than 1,100 and is a representative forest in central Taiwan. 
It comprises five watersheds, including two larger watersheds, Kuan-Dau at west and Tong-
Feng at east. All the tree samples were collected from the Tong-Feng and Kuan-Dau sites in 
Huisun.

2. MATERIAL AND METHOD



2.1.Species occurrence data

There are 929 CGT and 931 FR samples were collected by using a GPS linked with a 5-m 
expandable  rod and a  laser  range finder,  and then  performed a  post-processed  differential 
correction to makes them have an accuracy of sub-meters. Then the dataset was converted to 
ESRI Shapfile format for later use.

2.2.Environmental variables

This study used a digital elevation model (DEM) produced with lidar and provided by ministry 
of the interior, ROC (Taiwan). The DEM was interpolated and resampled into 5m, 20m, and 
40m, then build and evaluate SDMs seperately for each resolution (5/20/40 m). Slope, aspect, 
three types of curvatures (surface, plan, and profile), are derived from DEM with ArcGIS. To 
build TSI layers, first we extract and manually select ridge lines from DEMs with ArcGIS, 
digitize  and convert  to  raster  map,  assigned  255  as  the  ridge  otherwise  assigned  0.  Then 
compute the topographic sheltering index (TSI) with :

(1)

where S i j  = the topographic index of the test cell at i row and j column of ridge layer, w  
= the weight of the test cell in the k cardinal compass direction, dk  =the distance from the 
test cell  to the ridge cell  in the k cardinal compass direction,  S T D(d ′k )  =the standard 
deviation of scaled distances ( d ′k ) from a test cell to ridge cells in eight directions, and 

d ′k=
dk−m(d k)

m (dk )−min (dk )
(Huang, 2002). 

We  built  TSI  layers  with  ridges  of  4  different  level,  and  with  two  different  weight 
w k=2.0 ,2.0 ,1.0 ,1.0 ,1.0 ,1.0 ,1.0 ,2.0  and  w=10.0 ,10.0 ,1.0 ,1.0 ,1.0 ,1.0 ,1.0 ,10.0 ). 

Totally we have 14 different environmental variable layers.

2.3.Model devleopment

The study built SDM with 8 different algorithm for CGT and RFH, including : 

1. SVMlinear : support vector machine with linear kernel 
2. DA : discriminant analysis
3. DT_gini : Decision tree with Gini impurity splitting criteria 
4. DT_entropy : Decision tree with information gain splitting criteria 
5. KNN : K-nearest neighbors 
6. MLP : Multilayer perceptron 
7. RF_gini : Random forest with Gini impurity splitting criteria 
8. RF_entropy : Random forest with information gain splitting criteria

All  the algorithms are implemented  with python 3.8.0 and scikit-learn  0.22.1.  Python is  a 
dynamic, interpreted programming language, commonly used on data analysis, and scikit-learn 
is  a  free software machine  learning library  for  the python programming language to  build 
models.



Table 1: Modeling algorithm implemented in this paper:

Model Core concept Source

SVM Hyper-plane (Cortes and Vapnik, 1995)

DA Discriminant function (Hastie et al., 2008)

DT_gini Classification tree with Gini impurity (Breiman et al., 1984a)

DT_entropy Classification tree with information gain (Breiman et al., 1984a)

KNN nearest neighbors (Goldberger et al., 2005)

MLP network of perceptrons and backward 
propagation of errors

(Rumelhart et al., 1986)

RF_gini Random forest with Gini impurity (Breiman, 2001)

RF_entropy Random forest with information gain (Breiman, 2001)

2.3.1.  SVM: An SVM classifier maps input data into a high-dimensional space, construct a 
hyper-plane or a set of hyperplane in a high dimension space, to seperate all the data point into 
2 subsets. A good seperation is archieved when the hyper-plane has the maximum distance to 
the nearest training data point of any class. The SVM algorithm applied in this study is C-
support vector classification (C-SVC)(Chang and Lin, 2011).

Given training vectors x i∈Rn ,i=1 ,⋯ ,l ,  in two classes, and an indicator vector y∈ Rl  
such that y i∈ {1 ,−1} , C-SVC solves the following primal optimization problem.

(2)

where ϕ maps x i into a higher-dimensionial space and C>0 is the regularization parameter. 
Its dual is: 

(3)

where e=[1 ,…,1 ]T is the vector of all ones, Q is an l by l positive semidefinite matrix, 
Qi j≡ yi y j K ( x i , x j ) , and K ( x i , x j )≡ϕ ( x i)

T φ (x j)  is the kernel function.

After problem (3) is solved, using the primal-dual relationship, the optimal w satisfies

(4)

and the decision function is

(5)

2.3.2. DA:  The DA algorithm implemented is linear discriminant analysis (LDA). LDA is a 
way of finding a linear transformation of data that reduces the number of dimensions required 
to represent it. It is often used for dimensionality reduction prior to classification, but can also 
be used as a classification technique itself. LDA uses labeled data. The data is modeled by a 
multivariate Gaussian distribution for each class c, with mean μc and a common covariance 
matrix Σ .  Because the  covariance  matrix  for  each class  is  assumed to be the same,  the 
posterior distribution over the classes has a linear form, and for each class a linear discriminant 
function  (6) is computed,  where nc is the number of examples  of class c and n the total 



number  of  examples.  The  data  is  classified  by  choosing  the  largest  yc  (Witten  et  al., 
2016a).

(6)

2.3.3 DT:  DT build a tree with the training data, then predict with the tree. Constructing a 
decision tree is a recursive process.  First, select an attribute to place at the root node, and make 
one branch for each possible value, splits up the data set into subsets, one for every value of the 
attribute.  Repeat  the  process  recursively  for  each  branch,  using  only  those  instances  that 
actually reach the branch. If all instances at a node have the same class, stop developing that 
part of the tree. In seek of small trees, we would like this to happen as soon as possible. To 
choose the attribute that produces the purest daughter nodes, most DT algorithms applied a 
measure of the purity of each node (Witten et al., 2016b).  We applied two different measure of 
the purity for the decision tree. One is information gain (entropy), another is Gini index.

The  information  measure  (7)  relates  to  the  amount  of  information  obtained  by  making  a 
decision, and is based on the physical entropy concept. Decisions can be made in a single or 
several stages, and the amount of information involved is the same in both cases. 

(7)

where pi ,i=1 ,…,n is the proportion of the number of instance which belongs to class 
i.

Usually the logarithms are expressed in base 2, and then the entropy is in units called bits—just 
the usual kind of bits used with computers. When all the instance in the current node has the 
same class, the entropy has the minimum value zero, whereas if the number of instance of each 
class is the same, the entropy has a maximum value of one.

The Gini impurity can be computed with :

( 8)

For objects in a node t , use the rule that assigns an object selected at random from the node 
to class i  with probability p( i|t ) . The estimated probability that the item is actually in 
class  j  is  p( j|t ) . Therefore, the estimated probability of misclassification under this 
rule is the Gini index. The Gini index is simple and can be quickly computed (Breiman et al., 
1984b). 

2.3.4. KNN: For each item of the query dataset, the classification based on KNN locates the k 
closest members, generally using the Euclidean distance, of the training dataset. The category 
mostly represented by the k closest members is assigned to the considered item in the query 
dataset because it is statistically the most probable category for this item. With k goes up, the 
computing time goes up, but the advantage is that higher values of k provide smoothing that 
reduces vulnerability to noise in the training data (Garcia et al., 2008). We use the Minkowski 
distance with p=2 (equivalent to Euclidean distance) in the KNN implementation.

2.3.5. MLP:  Percptron was proposed by  (Rosenblatt,  1958) as the first supervised learning 



model,  it  is  the  simplest  form of  a  neural  network  used  for  the  classification  of  linearly 
separable patterns. The goal of the perceptron is to correctly classify the input set of externally  
applied  stimuli x1, x2 , . .. , xm into  one  of  two  classes, c1 or c2 .  For  each  input  vector 
x1 , x2,⋯ , xm , the percptron find an equation:

(9)

where

• w i  is the synaptic weights,

• and b  is externally applied bias.

The decision rule for the classification is to assign the point to class  c1  if the perceptron 
output y is +1 and to class c2  if it is -1. Perceptron built with a single neuron is limited to 
performing  binary  classification,  but  with  more  than  one  neuron,  the  MLP  is  capable  of 
performing classification with more classes (Haykin, 2009) .  MLP is a network of percptrons 
contains one or more layers that are hidden from both the input and output nodes. MLP has a 
high degree of connectivity,  the extent  of which is  determined by synaptic  weights  of the 
network.  Each  neuron  in  an  MLP  network  includes  a  nonlinear  differentiable  activation 
function.  Training  an MLP had been a  difficult  task before  the  development  of  the  back-
propagation algorithm in the mid-1980s ,which provided a computationally efficient method 
for the training of multilayer perceptrons (Haykin, 2009).

2.3.6. RF: Random forest is an ensemble learning approach which construct classifier with 
combination  of  several  decision  tree  predictors.  Each  trees  in  the  forest’s  training  data  is 
randomly sampled independently with the same distribution from the same dataset. Compared 
to  traditional  decision  tree  method,  RF is  less  sensitive  to  noise and generally  has  higher 
accuracy (Breiman, 2001) .

2.4.Model evaluation

The  dataset  is  split  into  training  (2/3)  and  testing(1/3)  subset  to  perform  a  split-sample 
validation.  Prediction  accuracy  of  each  model  were  measured  with  the  Cohen’s  kappa 
agreement coefficient and the overall accuracy score computed from a confusion matrix. The 
kappa value ranges from -1 to +1, where 0.81-1.0 indicate almost perfect agreement, 0.41 - 
0.60 is moderate agreement, and if the kappa is less than 0, the strength of agreement is poor 
(Landis and Koch, 1977) . The target of this study were to compare SDMs built with several 
machine learning algorithm and different combinations of environmental variables, to find the 
best approach to obtain the SDM with highest accuracy.

3. RESULT AND DISCUSSION

3.1.Descriptive statistics

According to the descriptive statistics data of CGT (Table 2) and FR (Table 3), CGT samples  
mainly  distributed  in  elevation  of  1316-1838  m,  it  is  a  wide-spread  species,  but  have  a 
tendency  to  grow on  relatively  higher  elevation  in  our  research  area.  FR samples  mainly 



distributed in elevation of 1683-1999 m, which is much higher than background examples and 
CGT. As  for  slope,  CGT samples  is  within  1.2-50.6  degree,  with  Q1=11.9  and  Q3=30.8  
degree, which is smaller than background examples. This phenomena may be caused by CGT’s 
light-demanding  characteristic.  FR  samples’  slope  has  a  range  of  1.1-58.0  degree,  with 
Q1=16.5 degree and Q3=32.6 degree, compared to background examples.  The lower value  
may indicate that their habitat preference of wide flat ridges as CGT. Both CGT and FR mostly 
grow in areas with higher TSI value (CGT: 0-3.1484 with Q1=0.0041, and Q3=0.6182;FR: 0-
17.9580 with Q1=0.0042, and Q3=0.8590), which mean the shading effect of ridges may have 
a positive effect on their occurence.

Table 2: Descriptive statistics of topographic variables for CGT

elevation aspect slope curvature
curvature

(plan)
curvature

(profile)
tsi2

Taget
Count: 168

mean 1,610.58 176.19 22.23 1.42 0.65 -0.77 0.41
std 310.90 134.37 12.22 7.60 4.08 4.56 0.70
min 674.75 2.32 1.18 -33.76 -14.31 -17.56 0.00
Q1 1,316.18 41.08 11.88 -2.13 -1.58 -2.86 0.00
Q3 1,838.42 323.61 30.78 4.20 2.26 1.42 0.62
max 2,082.72 358.23 50.57 33.72 16.16 19.44 3.15

Background
Count: 750

mean 1,302.09 189.68 39.08 -0.24 -0.09 0.15 0.02
std 377.91 104.12 13.12 14.83 7.85 8.72 0.14
min 472.77 2.00 0.78 -117.76 -62.21 -39.82 0.00
Q1 1,025.37 102.80 33.58 -5.21 -3.14 -3.39 0.00
Q3 1,563.27 278.21 47.23 4.80 2.83 3.30 0.01
max 2,374.16 358.96 72.03 79.36 39.54 82.29 2.49

tsi3_ tsi4_ tsi5_ tsi2_10_ tsi3_10_ tsi4_10_ tsi5_10_ TP

Target

mean 0.56 0.56 0.80 1.27 1.71 1.70 2.43 6.31
mean 0.73 0.71 0.77 2.64 2.66 2.51 2.70 1.36
std 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
min 0.02 0.02 0.16 0.01 0.03 0.03 0.45 6.00
Q1 0.88 0.88 1.26 1.09 2.21 2.31 3.63 7.00

Background

Q3 2.87 2.65 3.08 15.31 13.97 11.39 12.04 8.00
max 0.05 0.05 0.14 0.08 0.15 0.16 0.42 4.53
mean 0.16 0.16 0.29 0.56 0.59 0.57 1.01 1.80
std 0.00 0.00 0.00 0.01 0.00 0.00 0.00 1.00
min 0.01 0.01 0.04 0.01 0.03 0.04 0.11 3.00
Q1 0.03 0.03 0.12 0.03 0.09 0.10 0.36 6.00
Q3 2.49 2.49 3.60 10.04 10.00 10.00 14.86 8.00

Table 3: Descriptive statistics of topographic variables for FR (5m)

elevation aspect slope curvature
curvature

(plan)
curvatur
(profile)

Tsi2

target count:
181

mean 1,744.21 150.3305 25.54 4.3383 1.99 -2.3528 1.04
std 300.48 116.2382 12.37 18.7346 11.86 10.7171 2.44

min 1,036.43 2.4514 1.07 -54.9805 -30.49 -57.3595 0.00
0.25 1,683.31 57.1631 16.49 -4.9927 -3.55 -6.1449 0.00
0.75 1,998.75 247.9756 32.57 9.021 7.42 3.3129 0.86
max 2,077.00 358.0634 57.99 94.0063 49.08 26.8416 17.96

background 
count: 750

mean 1,302.19 189.9374 40.02 -2.6434 -0.89 1.751 0.02
std 377.91 103.5837 14.25 42.2937 23.94 28.6892 0.15

min 474.95 0.0557 1.32 -265.9912 -186.29 -245.7614 0.00
0.25 1,023.17 101.5846 32.50 -10.997 -7.57 -6.6522 0.00
0.75 1,562.98 277.8747 48.89 8.017 5.92 7.0496 0.01
max 2,372.86 359.4726 77.34 438.9893 193.23 293.9571 3.00

tsi3_ tsi4_ tsi5_ tsi2_10_ tsi3_10_ tsi4_10_ tsi5_10_ TP



target count: 
181

mean 1.71 1.6963 1.91 3.3605 5.42 5.339 5.92 6.52
std 2.75 2.6501 2.87 10.1701 11.60 10.9983 11.79 1.07
min 0.00 0 0.00 0 0.00 0 0.00 3.00
0.25 0.26 0.2553 0.50 0.0118 0.36 0.3578 0.71 6.00
0.75 1.81 1.8041 2.09 2.4004 4.18 4.2179 4.58 7.00
max 16.18 14.5034 16.65 77.4572 69.78 62.3743 71.58 8.00

background 
count: 750

mean 0.07 0.0833 0.20 0.0805 0.19 0.2542 0.61 4.53
std 0.50 0.5898 0.76 0.6379 1.28 1.848 2.71 1.80
min 0.01 0.006 0.02 0.006 0.01 0.0116 0.04 1.00
0.25 0.01 0.0131 0.04 0.0107 0.03 0.0365 0.11 3.00
0.75 0.03 0.0343 0.12 0.0333 0.09 0.1014 0.37 6.00
max 12.76 12.7644 9.84 12.5318 30.32 36.8513 46.55 8.00

3.2. Model performance

The best environmental combination for CGT is C1:elevation, slope, tsi3_, tsi4_, tsi5_, and for 
FR  the  best  is  C2:elevation,  tsi3_,  tsi4_10_,  tsi5_10,the  accuracy  assessment  result  are 
presented in table 4 and table 5. The results show that all the models built with 5m resolution 
data (Kappa value: 0.67) are superior to others built with 20m and 40m resolution data (0.60 
and 0.59). RF (gini and entropy) have similar accuracy (Kappa values:0.79 and 0.78 for CGT, 
0.84 and 0.86 for FR) , they are the most capable of predicting both the tree species’ potential 
habitat. The order of average predictive accuracy for models built with other algorithms from 
highest to lowest is MLP, DT_entropy, DA, DT_gini, SVM, KNN (Kappa values: 0.79, 0.76, 
0.53, 0.52, 0.52, 0.52 ) for CGT; DT_entropy,DT_gini, KNN, MLP, DA, SVM for RF (Kappa 
values: 0.77, 0.75, 0.75, 0.73, 0.63, 0.60). Although the MLP model is not the best among 
them,  it  still  has  a  noticeable  improvement  in  the  accuracy  on  high-resolution  data  (5m) 
(Validation  Kappa value:  CGT=0.73 and FR=0.76) as compared to those shallow machine 
learning algorithms such as KNN. 

Table 4: Model’s performance of CGT for enviromental variable combination C1: elevation, slope, tsi3_, tsi4_, 
tsi5_, for each algorithm.

DA SVM DT_gini DT_entropy
resolution(m) 40 20 5 40 20 5 40 20 5 40 20 5

OA training 0.81 78% 0.81 83% 0.81 81% 0.83 81% 0.81 96% 0.93 0.92
validation 0.74 77% 0.82 71% 0.78 84% 0.71 78% 0.84 85% 0.83 0.89
average 0.78 77% 0.81 77% 0.80 82% 0.77 80% 0.82 90% 0.88 0.90

Kappa training 0.58 0.51 0.56 0.59 0.56 0.55 0.59 0.56 0.55 0.90 0.84 0.82
validation 0.43 0.49 0.60 0.33 0.48 0.62 0.33 0.48 0.62 0.66 0.62 0.75
average 0.51 0.50 0.58 0.46 0.52 0.58 0.46 0.52 0.58 0.78 0.73 0.78

RF_gini RF_entropy MLP KNN
resolution(m) 40 20 5 40 20 5 40 20 5 40 20 5

OA
training 0.96 92% 0.95 96% 0.93 92% 0.98 94% 0.96 88% 0.85 0.86
validation 0.84 88% 0.87 84% 0.90 88% 0.82 88% 0.88 69% 0.73 0.79
average 0.90 90% 0.91 90% 0.91 90% 0.90 91% 0.92 78% 0.79 0.82

Kappa
training 0.92 0.82 0.89 0.92 0.84 0.82 0.95 0.85 0.90 0.69 0.65 0.65
validation 0.65 0.74 0.70 0.64 0.76 0.73 0.61 0.72 0.73 0.27 0.36 0.50
average 0.78 0.78 0.80 0.78 0.80 0.77 0.78 0.79 0.81 0.48 0.50 0.58

Table 5: Model’s performance of FR for enviromental variable combination C2
DA SVM DT_gini DT_entropy

resolution(m) 40 20 5 40 20 5 40 20 5 40 20 5

OA
training 0.67 68% 0.86 84% 0.80 86% 0.98 94% 0.93 92% 0.97 0.98
validation 0.72 75% 0.88 81% 0.81 86% 0.75 86% 0.89 79% 0.81 0.92
average 0.70 71% 0.87 82% 0.80 86% 0.87 90% 0.91 85% 0.89 0.95

Kappa training 0.53 0.49 0.78 0.61 0.49 0.66 0.95 0.85 0.83 0.80 0.93 0.95



validation 0.59 0.61 0.81 0.56 0.57 0.68 0.45 0.67 0.76 0.52 0.60 0.82
average 0.56 0.55 0.79 0.59 0.53 0.67 0.70 0.76 0.79 0.66 0.77 0.89

RF_gini RF_entropy MLP KNN
resolution(m) 40 20 5 40 20 5 40 20 5 40 20 5

OA
training 0.96 96% 0.97 96% 0.97 97% 0.91 90% 0.95 90% 0.89 0.94
validation 0.85 90% 0.95 87% 0.89 96% 0.85 78% 0.89 85% 0.86 0.90
average 0.90 93% 0.96 91% 0.93 97% 0.88 84% 0.92 87% 0.87 0.92

Kappa
training 0.91 0.91 0.92 0.91 0.92 0.94 0.79 0.75 0.89 0.78 0.73 0.86
validation 0.65 0.78 0.89 0.70 0.76 0.92 0.65 0.52 0.76 0.68 0.68 0.79
average 0.78 0.84 0.91 0.80 0.84 0.93 0.72 0.63 0.82 0.73 0.71 0.83

4. CONCLUSIONS

This paper built  SVM with various combinations  of environmental  factors  and algorithms, 
assess their performance to determine the best model. We also compare how their performance 
varies with spatial resolution. Models built with random forset (there is nearly no difference 
between RF_gini and RF_entropy) is the most accurate and robust algorithm for both species, 
the MLP model’s performance is slightly lower than FR, and sometimes outperformed DT_gini 
and  DT_entropy.  The  difference  among  algorithms  and  combinations  of  environmental 
variables for FR and CGT is mostly similar, but most of the models perform better on FR, also 
the KNN model performs far better on FR than CGT, since it usually clusters to form pure 
forests, while CGT’s has a wide-dispersed distribution pattern. However, the outcome clearly 
indicates that the models merely based on topographic variables did not perform well on spatial 
extrapolation  over  the  entire  study  area.  Thus,  the  models  developed  from  topographic 
variables can only be applied within a limited geographical extent without a significant error. 
Follow-up  studies  will  continue  to  overcome  difficulties  encountered  although  spatial 
extrapolation  of species pattern over  a large area is  extremely  difficult.  These studies  will 
generate more simulated data for environmental variables (causal factors) that include rainfall, 
humidity, soil moisture and thickness, sunlight, and others through geostatistical  modelling. 
Also, these studies will develop topographic variables as the surrogates of these causal factors, 
and the  raster  data  of  these  topographic  variables  will  be  calibrated  by combining on-site 
measurements of causal factors with fine-resolution, high-precision remote sensing imagery 
and spatially extrapolated over larger scales using machine learning algorithms, convolution 
neural  network  (CNN)  and  deep  learning.  Since  the  MLP model’s  performance  has  been 
demonstrated, other neural networks may has a high potential on building high accuracy and 
robust  SDM.  The  above-mentioned  algorithms  will  also  be  applied  to  performing  species 
distribution  modelling  so  that  the  accuracy  and credibility  of  predictive  modelling  can  be 
greatly improved.
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