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ABSTRACT: A series of big socio-economic development changes in the new era of China 
lead to new challenges that the methodology of air pollution control is increasingly complex 
and the marginal of air pollution control becomes gradually diminishing. These challenges 
call for a pressing demand for understanding the sensitivity of a region's atmospheric 
environment to pollutants and the potentials of atmospheric resources. This paper exploits an 
indicator called atmospheric environment capacity to measure the maximal allowed emissions 
of air pollutants in a region while meeting the air quality objectives. To enhance the accuracy 
of atmospheric environment capacity, this paper integrates remote sensing techniques and 
other dataset to generate a result without breaks over spatial and time dimension. The 
framework of our proposed methodology includes multi-modal remote sensing data 
processing, critical parameters mining from remote sensing data, and atmospheric 
environment capacity simulation. 

 
1. INTRODUCTION 

 
A series of big socio-economic development changes in the new era of China lead to new 
challenges that the methodology of air pollution control is increasingly complex and the 
marginal of air pollution control becomes gradually diminishing. These challenges call for a 
pressing demand for understanding the sensitivity of a region's atmospheric environment to 
pollution and the potential of atmospheric resources in this region. The capacity of atmospheric 
environment measures the maximal allowed emissions of air pollutants in a region while 
meeting the air quality objectives (Guo et al., 2018; Xu, Wang and Zhu, 2018). Thus, 
atmospheric environment capacity estimation becomes a significant technology for efficient 
and effective air pollution control in a region. 

 
China initially carried out urban-scale atmospheric environmental capacity estimation work in 
2003. The national work plan regarding urban environmental capacity verification defined the 
target and requirements, the technical methods and the main contents of the atmospheric 
environmental capacity estimation. Besides, a number of approaches have been proposed to 
study the characteristics of atmospheric environmental capacity by three types: objective (e.g. 
meteorological conditions and topography), subjective (air quality standards, pollutant 
emissions, and output from external sources), and the scarcity of resources. These conventional 
approaches relied on the massive point data acquired from monitoring stations. However, 
atmospheric conditions could change anytime in everywhere, making the spatial density and 
spatial distribution of point data insufficient to support a fine-detailed, accurate and complete 
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estimation on atmospheric environment capacity.  
 
Remote sensing is the technique that spatially seamless monitor the characteristics of a place, 
ensuring no breaks occurs in the study area . Previous researches regarding atmospheric remote 
sensing have proved that multi-modal remote sensing data could enhance the completeness of 
atmospheric research over spatial and time dimension (Gupta et al., 2006; Patino and Duque, 
2013; Xue, et al., 2017). 

 
To our knowledge, the efforts on atmospheric environment capacity with remote sensing have 
been rarely reported yet. This paper reports our work on using remote sensing data to enhance 
the estimation of atmospheric environment capacity. The framework of our proposed 
methodology includes multi-modal remote sensing data processing, critical parameters mining 
from remote sensing data, and atmospheric environment capacity simulation.  

 
2. RELATED WORKS 
2.1 Atmospheric Environment Stress, Atmospheric Environment Carrying Capacity and 

Atmospheric Environment Capacity 
 
Atmospheric Environment Stress (AES). AES (Zhou and Zhou, 2017) refers to the total amount 
of various atmospheric pollutants produced by natural causes and human activities. The 
commonly seen AES might include a variety of emissions of air pollutants. 

 
Atmospheric Environment Carrying Capacity (AECC). AECC (Guo et al., 2018; Li et al., 2019) 
refers to the atmospheric environment’s capability of decreasing or removing air pollutants. 
Considering that the atmospheric pollution is a dynamic processing, to distinguish the pollution 
sources people define the "implicit" AECC and "explicit" AECC. The explicit AECC includes 
the reduction amount or reduction plan for atmospheric pollutants. Otherwise, the "implicit" 
AECC includes some indirect actions, such as environmental investment, industrial structure, 
energy consumption proportion, etc.  

 
Atmospheric Environment Capacity (AEC). AEC (Guo et al., 2018; Xu, Wang and Zhu, 2018) 
refers to the maximum cutoff for pollutant emissions that could prevent a region from suffering 
from atmospheric pollution. Since the role of each atmospheric pollutant varies, the AEC should 
be given for each air pollutant. AEC is significance of the appropriate air pollutant emissions. 
When a type of air pollutant exceeds its AEC, it will cause atmospheric pollution. Therefore, 
atmospheric environment could be clear unless the AEC for all possible atmospheric pollutants 
meet the criteria. 

 
The interaction of AES, AECC and AEC determine the conditions of atmospheric environment. 
When AES>AECC, a severe atmospheric pollution could be occurred. Otherwise, when 
AES<AECC and (AECC-AES)<AEC, a slight atmospheric pollution might be happened. In 
comparison, (AECC-AES)>AEC means atmospheric environment is in good condition. I general, 
AES and AECC are available from the inventories of air pollutant emission, and the related 
statistics, respectively. Therefore, AEC is the critical indicator for the accurate prediction on 
atmospheric environmental conditions in a region. 

 
2.2 Site-based AEC estimation and satellite-based AEC estimation 

 
The monitoring sites and systems of atmospheric environment enrich the knowledge about 
atmospheric pollution and environment. In the era of big data and Internet of Things, the rapid 
improvement of the ground-based atmospheric monitoring network has improved the ability to 



sense air pollution in the surrounding area. The atmospheric monitoring sites such as AeroNeT, 
CARSNet have been commonly used in a great number of investigations regarding atmospheric 
pollutions.  

 
However, the increasing of monitoring sites still poses a challenge for assessing the spatial and 
temporal changes of atmospheric environment in a region. Although many interpolations and 
reconstruction methods have been proposed to generate a data that no break occurs in spatial 
dimension, the point-based data might not be appropriate to represent the complex changes in a 
spatial space (Martin, 2008; She et al., 2018). Moreover, the vertical and long-range 
transportations of atmospheric pollutants are impossible to be represented by the data derived 
from ground-based observations (Mao et al., 2010). 

 
Thus, an accurate and precise AEC estimation relies on the site-based observations and satellite-
based earth observation data. Site-based observations provides timely-update and accurate data, 
and satellite-based earth observation data offer the imagery product that covers a large-scale 
region without spatial breaks.  

 
3. FRAMEWORK OF AEC ESTIMATION 
3.1 Data layer 

 
Table 1 lists the data necessary for AEC estimation. Based on the achievements of previous 
research, we take population density distribution and transportation network into the 
consideration for AEC estimation. Moreover, besides the dataset used by the-state-of-the-art 
approaches for AEC, this paper integrates remote sensing and GIS data including digital 
elevation models, high-resolution satellite images and multispectral satellite images to support 
the calculation of AEC.  

 
Table 1 Atmospheric capacity calculation parameters and data support. 

Parameters Data Type 
Atmospheric pollution elements Multispectral satellite image 

Atmospheric pollution degree Multispectral satellite image 
Weather condition Surface weather observation 

Atmospheric pollution condition Multispectral satellite image 
Sources of air pollution emission Multispectral satellite image 
Atmospheric pollution delivery Multispectral satellite image 

AECC Empirical data 
AES Empirical data 

Landform and terrain Digital elevation models 
Land cover/land use High-spatial resolution 

satellite image 
Environmental protection 

investment 
Economic statistics 

Energy consumption structure Economic statistics 
Industrial structure Economic statistics 

Air quality standards Text data 
Emission standards for air 

pollutants 
Text data 

GDP Text data 
Population density and 

distribution 
GIS data 

Traffic network GIS data 
Sources of air pollution emission GIS data 

 



The nature of these data listed in Table 1 includes multiple data sources, multiple data 
modalities, and multiple data domain. 

 
The data listed in Table 1 are from a wide range of sources. For example, satellite imagery 
might be available from different satellite-based, airborne or unmanned aerial vehicle (UAV) 
-based sensors; meteorological observations can come from different types of environmental 
or air pollution monitoring stations; and digital elevation models can come from LiDAR point 
cloud data or mapping data. Studies of big data have shown that data from a wide range of 
sources can affect the Value, Veracity and Validity of the data. In addition, data from 
different sources, even if they contain the same content, can have different structures for the 
same content due to different data production methods. 

 
The data in Table 1 includes several aspects of modality: (1) Multimodal data structure: the 
data structure in Table 1 includes matrix structure, raster structure, vector structure, and so on. 
(2) Multimodal of data types: the data types in Table 1 include data optical image data, 
multispectral data cubes, text data, spatial data, and so on. (3) Multimodal of data 
manipulation: data manipulation depends on data structure and data type, and due to the 
diversity of data structure, there is diversity of data manipulation. For example, convolution 
operation is mainly applied to optical image data, On-line Analytical Processing (OLAP) is 
mainly applied to multispectral or hyperspectral data, buffer operation is mainly applied to 
spatial data, and so on. 

 
Multi-domain data are data that contain information from different domains. For example, the 
data in Table 1 includes different domains such as atmospheric environment, geographic 
information, geological survey, market economy, and population distribution. With the 
accumulation of research on deep learning for big data integration, multi-domain data is 
beginning to be valued. Compared to the more obvious and direct heterogeneity of data in 
multi-source and multimodal data, the heterogeneity of multi-domain data is more implicit 
and exists in the different standards and semantics in the process of data production and use. 
For example, data on the atmospheric environment tend to be point data based on monitoring 
stations, while population distribution data tend to be facet data. Economic statistics and 
textual data do not have coordinates, whereas coordinates of GIS data, remotely sensed image 
data, etc., are basic requirements. 

 
3.2 High performance computing (HPC) layer 

 
Compared with the traditional single-CPU computing model, heterogeneous computing builds 
a platform that includes processors with different architectures. In recent years, research on 
geological big data computing has demonstrated that heterogeneous computing can 
effectively enhance the "4Ps" of high-performance computing for geological data - 
performance, productivity, power, and economy (Liu et al., 2019). Therefore, it is necessary 
to design a high-performance heterogeneous computing framework for remote sensing-based 
capacity calculation of the atmospheric environment, and construct a high-performance 
computing model that can meet the needs of calculation and analysis of atmospheric 
environmental data in terms of both performance and efficiency, as well as in terms of 
economy. Considering the temporal and spatial consistency of remote sensing image data, the 
high-performance heterogeneous computing model for remote sensing-based atmospheric 
capacity calculation can be divided into data space-based heterogeneous parallel, data time-
based heterogeneous parallel, and data content-based heterogeneous parallel. 

 
The data space-based heterogeneous parallelism divides the raw data in the same time range 



into different data regions based on the spatial scope, and then uses the same set of 
"CPU+GPU" hybrid algorithm for the different data regions. The spatial range can be divided 
according to quadratic tree, octagonal tree and other tree structures with equal-area rule, or 
irregularly according to hierarchical enclosing tree, BSP tree, k-d tree and other tree structures. 
Heterogeneous parallelism based on data time will cover the same spatial scope of the 
original data based on time distribution combined into different data streams, and then the 
different data streams using the same set of "CPU + GPU" hybrid algorithm. 
Data content-based heterogeneous parallelism is more complex and is based on the content of 
the original data. I 

 
3.3 Information fusion layer 

 
Considering the data for AEC estimation includes large-scale various dataset, information 
fusion layer is designed to fuse those data into a enhanced dataset. In general, the modality of 
these data varies in spatial coverage and temporal trend. 
 
Different in spatial coverage modalities. The continuous release of the atmospheric 
environment in space is basically in accordance with the first law of geography, that is, the 
atmospheric environment of each region is related, and regions closer to a certain location are 
more susceptible to the influence of the atmospheric environment of that location than regions 
farther away. Therefore, the estimation of the atmospheric capacity of a region is not only 
considering the atmospheric environment of the region, but also needs to include the 
atmospheric environment of the surrounding area in the analysis.  

 
Different temporal trend modalities. The change of the atmospheric environment in time is a 
dynamic process, and the atmospheric environmental conditions at one moment are correlated 
with the atmospheric environmental conditions at the previous moment or even the previous 
time period. Therefore, the estimation of the atmospheric capacity of a region at a given 
moment needs to take into account the atmospheric conditions of the region in the previous 
time period. 

 
Moreover, according to the current classification of data fusion, data fusion can be 
strategically divided into: platform-level fusion, data-level fusion, feature-level fusion, 
semantic-level fusion, and decision-level fusion. Platform-level fusion mainly refers to the 
data are fused in the data sources. Data-level fusion mainly refers to data fusion are processed 
based on data properties and data metadata. Feature-level fusion mainly refers to the fusion is 
processed based on features derived from each data. A great number of classical methods 
regarding data fusion employ this strategy. Semantic-level fusion is less researched in the 
early stages and mainly means that some classical methods such as all can be used to support 
the semantic-level fusion strategy. 

 
3.4 Estimation modeling layer 

 
Based on the foundation of previous research, this paper incorporates population density 
distribution and transportation network into the calculation of atmospheric environmental 
capacity, and combines the tasks that can be provided by digital elevation models, high-
resolution remote sensing images and multispectral remote sensing images produced by 
satellite remote sensing technology to propose the data set required for the calculation of 
atmospheric environmental capacity based on remote sensing and GIS data, as shown in 
Figure 1. The required data are multi-source, multi-modal and multi-domain in nature. In 
particular, the red part of Figure 1 shows the computational categories specific to remote 



sensing and GIS data-based data. 
 

 

Figure 1. The framework to support multi-scale AEC estimation. 
 
Then, the methods corresponding to the parameters are summarized as follows, 
Based on the multispectral satellite image, quantitative retrieval approaches could be useful 
for atmospheric pollution elements, atmospheric pollution degree, atmospheric pollution 
condition, atmospheric pollutant delivery. 

 
 Based on surface weather observation, statistical analysis such as linear regression could 

be useful for weather condition modeling. 
 
 Based on empirical data, AECC and AEC could be available. 

 
 Based on high-spatial resolution satellite image, the conditions of land cover/land use 

could be obtained by data classification. 
 
 Based on digital elevation models, the 3-D landform and terrain features could be 

detected by terrain analysis. 
 
 Based on economic statistics, a variety of statistical computing algorithms could generate 

the results of environmental protection investment, energy consumption structure, and 
industrial structure. 

 
 Text mining and statistical analysis could support to generate the numerical information 

from air quality standards, emission standards for air pollutants, and GDP. 
 
 Geo-spatial analysis could derive the spatial pattern for population density and 



distribution, traffic network, and sources of air pollution emission from GIS data. 
 
 
4. Conclusion 

 
Efficient atmospheric pollution control and management acts as an important role of the 
construction for ecological civilization and the project “Building a beautiful China.” In the 
new era, the gradual changes of industrial structure, energy consumption patterns, 
urbanization and other socio-economic developments in China has progressing a new routine 
of atmospheric environment. In details, air pollution control has become increasingly 
challenging, the marginal effects of air pollution control has gradually diminishing, and the 
room for significant improvement of air quality has become emerging. All of these new 
challenges pose a pressing a demand for strategies that support an accurate understanding on 
the roles of human and natural causing air pollution. Moreover, to enhance an accurate 
atmospheric emission reduction and control, the capacity of the atmospheric environment is 
necessary to help scientists and governments assess the sensitivity of a regional atmospheric 
environment for pollutants and the potentials of atmospheric resources. 
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